Serveur d'exploration Glutathion S-transférase végétale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptional response of Fusarium oxysporum and Neocosmospora solani challenged with amphotericin B or posaconazole.

Identifieur interne : 000101 ( Main/Corpus ); précédent : 000100; suivant : 000102

Transcriptional response of Fusarium oxysporum and Neocosmospora solani challenged with amphotericin B or posaconazole.

Auteurs : A. Castillo-Casta Eda ; S J Ca As-Duarte ; M. Guevara-Suarez ; J. Guarro ; S. Restrepo ; A M Celis Ramírez

Source :

RBID : pubmed:32644917

Abstract

Some species of fusaria are well-known pathogens of humans, animals and plants. Fusarium oxysporum and Neocosmospora solani (formerly Fusarium solani) cause human infections that range from onychomycosis or keratitis to severe disseminated infections. In general, these infections are difficult to treat due to poor therapeutic responses in immunocompromised patients. Despite that, little is known about the molecular mechanisms and transcriptional changes responsible for the antifungal resistance in fusaria. To shed light on the transcriptional response to antifungals, we carried out the first reported high-throughput RNA-seq analysis for F. oxysporum and N. solani that had been exposed to amphotericin B (AMB) and posaconazole (PSC). We detected significant differences between the transcriptional profiles of the two species and we found that some oxidation-reduction, metabolic, cellular and transport processes were regulated differentially by both fungi. The same was found with several genes from the ergosterol synthesis, efflux pumps, oxidative stress response and membrane biosynthesis pathways. A significant up-regulation of the C-22 sterol desaturase (ERG5), the sterol 24-C-methyltransferase (ERG6) gene, the glutathione S-transferase (GST) gene and of several members of the major facilitator superfamily (MSF) was demonstrated in this study after treating F. oxysporum with AMB. These results offer a good overview of transcriptional changes after exposure to commonly used antifungals, highlights the genes that are related to resistance mechanisms of these fungi, which will be a valuable tool for identifying causes of failure of treatments.

DOI: 10.1099/mic.0.000927
PubMed: 32644917
PubMed Central: PMC7660915

Links to Exploration step

pubmed:32644917

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptional response of
<i>Fusarium oxysporum</i>
and
<i>Neocosmospora solani</i>
challenged with amphotericin B or posaconazole.</title>
<author>
<name sortKey="Castillo Casta Eda, A" sort="Castillo Casta Eda, A" uniqKey="Castillo Casta Eda A" first="A" last="Castillo-Casta Eda">A. Castillo-Casta Eda</name>
<affiliation>
<nlm:affiliation>Laboratorio de Micología y Fitopatología (LAMFU), Facultad de Ingeniería, Universidad de Los Andes, Bogotá, Colombia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ca As Duarte, S J" sort="Ca As Duarte, S J" uniqKey="Ca As Duarte S" first="S J" last="Ca As-Duarte">S J Ca As-Duarte</name>
<affiliation>
<nlm:affiliation>Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Harvard University, Boston, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guevara Suarez, M" sort="Guevara Suarez, M" uniqKey="Guevara Suarez M" first="M" last="Guevara-Suarez">M. Guevara-Suarez</name>
<affiliation>
<nlm:affiliation>Laboratorio de Micología y Fitopatología (LAMFU), Facultad de Ingeniería, Universidad de Los Andes, Bogotá, Colombia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guarro, J" sort="Guarro, J" uniqKey="Guarro J" first="J" last="Guarro">J. Guarro</name>
<affiliation>
<nlm:affiliation>Facultat de Medicina I Ciéncies de la Salut, Departament de Ciéncies Médiques Básiques, Unitat de Microbiología. Universitat de Rovira I Virgili, Reus, España.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Restrepo, S" sort="Restrepo, S" uniqKey="Restrepo S" first="S" last="Restrepo">S. Restrepo</name>
<affiliation>
<nlm:affiliation>Laboratorio de Micología y Fitopatología (LAMFU), Facultad de Ingeniería, Universidad de Los Andes, Bogotá, Colombia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Celis Ramirez, A M" sort="Celis Ramirez, A M" uniqKey="Celis Ramirez A" first="A M" last="Celis Ramírez">A M Celis Ramírez</name>
<affiliation>
<nlm:affiliation>Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32644917</idno>
<idno type="pmid">32644917</idno>
<idno type="doi">10.1099/mic.0.000927</idno>
<idno type="pmc">PMC7660915</idno>
<idno type="wicri:Area/Main/Corpus">000101</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000101</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptional response of
<i>Fusarium oxysporum</i>
and
<i>Neocosmospora solani</i>
challenged with amphotericin B or posaconazole.</title>
<author>
<name sortKey="Castillo Casta Eda, A" sort="Castillo Casta Eda, A" uniqKey="Castillo Casta Eda A" first="A" last="Castillo-Casta Eda">A. Castillo-Casta Eda</name>
<affiliation>
<nlm:affiliation>Laboratorio de Micología y Fitopatología (LAMFU), Facultad de Ingeniería, Universidad de Los Andes, Bogotá, Colombia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ca As Duarte, S J" sort="Ca As Duarte, S J" uniqKey="Ca As Duarte S" first="S J" last="Ca As-Duarte">S J Ca As-Duarte</name>
<affiliation>
<nlm:affiliation>Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Harvard University, Boston, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guevara Suarez, M" sort="Guevara Suarez, M" uniqKey="Guevara Suarez M" first="M" last="Guevara-Suarez">M. Guevara-Suarez</name>
<affiliation>
<nlm:affiliation>Laboratorio de Micología y Fitopatología (LAMFU), Facultad de Ingeniería, Universidad de Los Andes, Bogotá, Colombia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guarro, J" sort="Guarro, J" uniqKey="Guarro J" first="J" last="Guarro">J. Guarro</name>
<affiliation>
<nlm:affiliation>Facultat de Medicina I Ciéncies de la Salut, Departament de Ciéncies Médiques Básiques, Unitat de Microbiología. Universitat de Rovira I Virgili, Reus, España.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Restrepo, S" sort="Restrepo, S" uniqKey="Restrepo S" first="S" last="Restrepo">S. Restrepo</name>
<affiliation>
<nlm:affiliation>Laboratorio de Micología y Fitopatología (LAMFU), Facultad de Ingeniería, Universidad de Los Andes, Bogotá, Colombia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Celis Ramirez, A M" sort="Celis Ramirez, A M" uniqKey="Celis Ramirez A" first="A M" last="Celis Ramírez">A M Celis Ramírez</name>
<affiliation>
<nlm:affiliation>Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microbiology (Reading, England)</title>
<idno type="eISSN">1465-2080</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Some species of fusaria are well-known pathogens of humans, animals and plants.
<i>Fusarium oxysporum</i>
and
<i>Neocosmospora solani</i>
(formerly
<i>Fusarium solani</i>
) cause human infections that range from onychomycosis or keratitis to severe disseminated infections. In general, these infections are difficult to treat due to poor therapeutic responses in immunocompromised patients. Despite that, little is known about the molecular mechanisms and transcriptional changes responsible for the antifungal resistance in fusaria. To shed light on the transcriptional response to antifungals, we carried out the first reported high-throughput RNA-seq analysis for
<i>F. oxysporum</i>
and
<i>N. solani</i>
that had been exposed to amphotericin B (AMB) and posaconazole (PSC). We detected significant differences between the transcriptional profiles of the two species and we found that some oxidation-reduction, metabolic, cellular and transport processes were regulated differentially by both fungi. The same was found with several genes from the ergosterol synthesis, efflux pumps, oxidative stress response and membrane biosynthesis pathways. A significant up-regulation of the C-22 sterol desaturase (
<i>ERG5</i>
), the sterol 24-C-methyltransferase (
<i>ERG6</i>
) gene, the glutathione S-transferase (
<i>GST</i>
) gene and of several members of the major facilitator superfamily (
<i>MSF</i>
) was demonstrated in this study after treating
<i>F. oxysporum</i>
with AMB. These results offer a good overview of transcriptional changes after exposure to commonly used antifungals, highlights the genes that are related to resistance mechanisms of these fungi, which will be a valuable tool for identifying causes of failure of treatments.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">32644917</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1465-2080</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>166</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2020</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Microbiology (Reading, England)</Title>
<ISOAbbreviation>Microbiology (Reading)</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptional response of
<i>Fusarium oxysporum</i>
and
<i>Neocosmospora solani</i>
challenged with amphotericin B or posaconazole.</ArticleTitle>
<Pagination>
<MedlinePgn>936-946</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1099/mic.0.000927</ELocationID>
<Abstract>
<AbstractText>Some species of fusaria are well-known pathogens of humans, animals and plants.
<i>Fusarium oxysporum</i>
and
<i>Neocosmospora solani</i>
(formerly
<i>Fusarium solani</i>
) cause human infections that range from onychomycosis or keratitis to severe disseminated infections. In general, these infections are difficult to treat due to poor therapeutic responses in immunocompromised patients. Despite that, little is known about the molecular mechanisms and transcriptional changes responsible for the antifungal resistance in fusaria. To shed light on the transcriptional response to antifungals, we carried out the first reported high-throughput RNA-seq analysis for
<i>F. oxysporum</i>
and
<i>N. solani</i>
that had been exposed to amphotericin B (AMB) and posaconazole (PSC). We detected significant differences between the transcriptional profiles of the two species and we found that some oxidation-reduction, metabolic, cellular and transport processes were regulated differentially by both fungi. The same was found with several genes from the ergosterol synthesis, efflux pumps, oxidative stress response and membrane biosynthesis pathways. A significant up-regulation of the C-22 sterol desaturase (
<i>ERG5</i>
), the sterol 24-C-methyltransferase (
<i>ERG6</i>
) gene, the glutathione S-transferase (
<i>GST</i>
) gene and of several members of the major facilitator superfamily (
<i>MSF</i>
) was demonstrated in this study after treating
<i>F. oxysporum</i>
with AMB. These results offer a good overview of transcriptional changes after exposure to commonly used antifungals, highlights the genes that are related to resistance mechanisms of these fungi, which will be a valuable tool for identifying causes of failure of treatments.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Castillo-Castañeda</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Laboratorio de Micología y Fitopatología (LAMFU), Facultad de Ingeniería, Universidad de Los Andes, Bogotá, Colombia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cañas-Duarte</LastName>
<ForeName>S J</ForeName>
<Initials>SJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Harvard University, Boston, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guevara-Suarez</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratorio de Micología y Fitopatología (LAMFU), Facultad de Ingeniería, Universidad de Los Andes, Bogotá, Colombia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guarro</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Facultat de Medicina I Ciéncies de la Salut, Departament de Ciéncies Médiques Básiques, Unitat de Microbiología. Universitat de Rovira I Virgili, Reus, España.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Restrepo</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Laboratorio de Micología y Fitopatología (LAMFU), Facultad de Ingeniería, Universidad de Los Andes, Bogotá, Colombia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Celis Ramírez</LastName>
<ForeName>A M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Microbiology (Reading)</MedlineTA>
<NlmUniqueID>9430468</NlmUniqueID>
<ISSNLinking>1350-0872</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">RNA-Seq</Keyword>
<Keyword MajorTopicYN="N">amphotericin B</Keyword>
<Keyword MajorTopicYN="N">fusaria</Keyword>
<Keyword MajorTopicYN="N">posaconazole</Keyword>
<Keyword MajorTopicYN="N">transcriptional changes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32644917</ArticleId>
<ArticleId IdType="doi">10.1099/mic.0.000927</ArticleId>
<ArticleId IdType="pmc">PMC7660915</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2013 May;198(3):821-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23442154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2010 Oct;54(10):4446-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20625156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Nutr Food Res. 2013 Jan;57(1):165-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23047235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2003 Sep;47(9):2717-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12936965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Clin Microbiol Infect Dis. 2014 Sep;33(9):1623-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24791951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(7):e21800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21789182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2006 Jul;50(1):32-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16622700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology (Reading). 1999 Oct;145 ( Pt 10):2701-2713</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10537192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Aug;5(8):e1000618</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19714214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2008 Jun 26;51(12):3480-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18505250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2009 Jun;63(6):1152-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19318361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2013 Mar;56:89-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23195683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Apr 07;12(4):e1005464</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27054821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2008 Apr;46(4):1200-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18234874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2008 Dec;52(12):4220-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18838595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2016 Feb 23;7(1):e01919-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26908577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2018 Dec 1;365(23):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30398655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Mar;47(6):1523-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12622810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Aug;38(15):5075-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20392818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2013 Jan;31(1):46-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23222703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Infect Dis. 2013 Jan 30;13:49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23363475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 May;28(5):511-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20436464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2010 Feb 18;11:94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20167110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Persoonia. 2018 Dec;41:109-129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30728601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jun;36(10):3420-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18445632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2018 Oct;45:70-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29547801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 Apr;269(8):2075-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11985584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1996 Mar;119(3):435-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8830036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Mycol. 2009 May;47(3):237-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18663659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Jan 17;9:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29387050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Persoonia. 2018 Dec;40:1-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30504994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stud Mycol. 2015 Mar;80:189-245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26955195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Nov 11;8(11):e79042</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24244413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2014 Apr;116(4):955-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24314266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2012 Feb;56(2):1031-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22123699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Inf Model. 2012 Nov 26;52(11):3053-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23092521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2007 Apr;51(4):1500-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 6;320(5881):1344-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2009 Jan;10(1):57-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19015660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2007 Oct;20(4):695-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17934079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 May 1;25(9):1105-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19289445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2013 Oct;11(10):e1001692</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24204207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2015 Dec 07;60(2):1079-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26643334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2002 Aug;36(3):199-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12135575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2017 Nov;50(5):607-616</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28705674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1998 Jul;42(7):1756-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9661017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 May 1;29(9):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2010 Feb;47(2):94-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19665571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2005 Jun;49(6):2226-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2007 Mar;51(3):982-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1997 Jan;41(1):196-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8980781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Microbiol. 2012;2012:713687</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22187560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Iran Biomed J. ;21(4):275-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28176517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2001 Jun;45(6):1660-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11353609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Mar 19;11(3):e1004668</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25790300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect. 2010 May;60(5):331-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20138081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Jul 09;3(7):e2655</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18648542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Nov 01;9:465</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18976492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Mar 18;464(7287):367-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20237561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2013 Jan 10;3:439</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23335918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2011 May 11;11:97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21569340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2012 Oct;335(1):58-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22788662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxins (Basel). 2018 Mar 07;10(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29518888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1986 Jul;154(1):76-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3519792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2006 May 15;42(10):1398-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16619151</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantGlutaTransV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000101 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000101 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantGlutaTransV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32644917
   |texte=   Transcriptional response of Fusarium oxysporum and Neocosmospora solani challenged with amphotericin B or posaconazole.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32644917" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantGlutaTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:50:29 2020. Site generation: Sat Nov 21 15:50:53 2020