Serveur d'exploration Glutathion S-transférase végétale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of flupyradifurone resistance in the whitefly Bemisia tabaci Mediterranean (Q biotype).

Identifieur interne : 000099 ( Main/Corpus ); précédent : 000098; suivant : 000100

Characterization of flupyradifurone resistance in the whitefly Bemisia tabaci Mediterranean (Q biotype).

Auteurs : Ran Wang ; Jinda Wang ; Jiasong Zhang ; Wunan Che ; Honglin Feng ; Chen Luo

Source :

RBID : pubmed:32652864

Abstract

BACKGROUND

Bemisia tabaci is one of most notorious pests on various crops worldwide and many populations show high resistance to different types of insecticides. Flupyradifurone is a novel insecticide against sucking pests. B. tabaci resistance to flupyradifurone has been detected in the field, however the mechanism of flupyradifurone resistance has rarely been studied.

RESULTS

The flupyradifurone-resistant strain (FLU-SEL) was selected from the susceptible strain of B. tabaci (MED-S) using flupyradifurone for 24 generations. The FLU-SEL strain exhibited 105.56-fold resistance to flupyradifurone, and moderate cross-resistance to imidacloprid, but no cross-resistance to other tested neonicotinoids. Synergism tests and metabolic enzyme assays suggested that FLU-SEL resistance can be attributed to enhanced detoxification mediated by glutathione S-transferase (GST) and P450 monooxygenase (P450). Compared with MED-S strain, CYP6CX4 and GSTs2 were significantly overexpressed in FLU-SEL, and silencing CYP6CX4 or GSTs2 increased the mortality of whiteflies to flupyradifurone challenge in FLU-SEL. In addition, silencing CYP6CX4 also increased the mortality of whiteflies exposed to imidacloprid.

CONCLUSION

Overexpression of CYP6CX4 and GSTs2 was associated with flupyradifurone resistance, as confirmed by RNA interference. Our findings suggested that metabolic resistance to flupyradifurone might be mediated by P450s and GSTs.


DOI: 10.1002/ps.5995
PubMed: 32652864

Links to Exploration step

pubmed:32652864

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of flupyradifurone resistance in the whitefly Bemisia tabaci Mediterranean (Q biotype).</title>
<author>
<name sortKey="Wang, Ran" sort="Wang, Ran" uniqKey="Wang R" first="Ran" last="Wang">Ran Wang</name>
<affiliation>
<nlm:affiliation>Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jinda" sort="Wang, Jinda" uniqKey="Wang J" first="Jinda" last="Wang">Jinda Wang</name>
<affiliation>
<nlm:affiliation>National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jiasong" sort="Zhang, Jiasong" uniqKey="Zhang J" first="Jiasong" last="Zhang">Jiasong Zhang</name>
<affiliation>
<nlm:affiliation>National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Che, Wunan" sort="Che, Wunan" uniqKey="Che W" first="Wunan" last="Che">Wunan Che</name>
<affiliation>
<nlm:affiliation>Department of Pesticide Sciences, Shenyang Agricultural University, Shenyang, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Feng, Honglin" sort="Feng, Honglin" uniqKey="Feng H" first="Honglin" last="Feng">Honglin Feng</name>
<affiliation>
<nlm:affiliation>Boyce Thompson Institute, Ithaca, NY, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Luo, Chen" sort="Luo, Chen" uniqKey="Luo C" first="Chen" last="Luo">Chen Luo</name>
<affiliation>
<nlm:affiliation>Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32652864</idno>
<idno type="pmid">32652864</idno>
<idno type="doi">10.1002/ps.5995</idno>
<idno type="wicri:Area/Main/Corpus">000099</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000099</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of flupyradifurone resistance in the whitefly Bemisia tabaci Mediterranean (Q biotype).</title>
<author>
<name sortKey="Wang, Ran" sort="Wang, Ran" uniqKey="Wang R" first="Ran" last="Wang">Ran Wang</name>
<affiliation>
<nlm:affiliation>Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jinda" sort="Wang, Jinda" uniqKey="Wang J" first="Jinda" last="Wang">Jinda Wang</name>
<affiliation>
<nlm:affiliation>National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jiasong" sort="Zhang, Jiasong" uniqKey="Zhang J" first="Jiasong" last="Zhang">Jiasong Zhang</name>
<affiliation>
<nlm:affiliation>National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Che, Wunan" sort="Che, Wunan" uniqKey="Che W" first="Wunan" last="Che">Wunan Che</name>
<affiliation>
<nlm:affiliation>Department of Pesticide Sciences, Shenyang Agricultural University, Shenyang, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Feng, Honglin" sort="Feng, Honglin" uniqKey="Feng H" first="Honglin" last="Feng">Honglin Feng</name>
<affiliation>
<nlm:affiliation>Boyce Thompson Institute, Ithaca, NY, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Luo, Chen" sort="Luo, Chen" uniqKey="Luo C" first="Chen" last="Luo">Chen Luo</name>
<affiliation>
<nlm:affiliation>Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Pest management science</title>
<idno type="eISSN">1526-4998</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Bemisia tabaci is one of most notorious pests on various crops worldwide and many populations show high resistance to different types of insecticides. Flupyradifurone is a novel insecticide against sucking pests. B. tabaci resistance to flupyradifurone has been detected in the field, however the mechanism of flupyradifurone resistance has rarely been studied.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The flupyradifurone-resistant strain (FLU-SEL) was selected from the susceptible strain of B. tabaci (MED-S) using flupyradifurone for 24 generations. The FLU-SEL strain exhibited 105.56-fold resistance to flupyradifurone, and moderate cross-resistance to imidacloprid, but no cross-resistance to other tested neonicotinoids. Synergism tests and metabolic enzyme assays suggested that FLU-SEL resistance can be attributed to enhanced detoxification mediated by glutathione S-transferase (GST) and P450 monooxygenase (P450). Compared with MED-S strain, CYP6CX4 and GSTs2 were significantly overexpressed in FLU-SEL, and silencing CYP6CX4 or GSTs2 increased the mortality of whiteflies to flupyradifurone challenge in FLU-SEL. In addition, silencing CYP6CX4 also increased the mortality of whiteflies exposed to imidacloprid.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Overexpression of CYP6CX4 and GSTs2 was associated with flupyradifurone resistance, as confirmed by RNA interference. Our findings suggested that metabolic resistance to flupyradifurone might be mediated by P450s and GSTs.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32652864</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1526-4998</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>Pest management science</Title>
<ISOAbbreviation>Pest Manag Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of flupyradifurone resistance in the whitefly Bemisia tabaci Mediterranean (Q biotype).</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ps.5995</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Bemisia tabaci is one of most notorious pests on various crops worldwide and many populations show high resistance to different types of insecticides. Flupyradifurone is a novel insecticide against sucking pests. B. tabaci resistance to flupyradifurone has been detected in the field, however the mechanism of flupyradifurone resistance has rarely been studied.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The flupyradifurone-resistant strain (FLU-SEL) was selected from the susceptible strain of B. tabaci (MED-S) using flupyradifurone for 24 generations. The FLU-SEL strain exhibited 105.56-fold resistance to flupyradifurone, and moderate cross-resistance to imidacloprid, but no cross-resistance to other tested neonicotinoids. Synergism tests and metabolic enzyme assays suggested that FLU-SEL resistance can be attributed to enhanced detoxification mediated by glutathione S-transferase (GST) and P450 monooxygenase (P450). Compared with MED-S strain, CYP6CX4 and GSTs2 were significantly overexpressed in FLU-SEL, and silencing CYP6CX4 or GSTs2 increased the mortality of whiteflies to flupyradifurone challenge in FLU-SEL. In addition, silencing CYP6CX4 also increased the mortality of whiteflies exposed to imidacloprid.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Overexpression of CYP6CX4 and GSTs2 was associated with flupyradifurone resistance, as confirmed by RNA interference. Our findings suggested that metabolic resistance to flupyradifurone might be mediated by P450s and GSTs.</AbstractText>
<CopyrightInformation>© 2020 Society of Chemical Industry.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Ran</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-8199-6895</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jinda</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jiasong</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Che</LastName>
<ForeName>Wunan</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Pesticide Sciences, Shenyang Agricultural University, Shenyang, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Honglin</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Boyce Thompson Institute, Ithaca, NY, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Chen</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Pest Manag Sci</MedlineTA>
<NlmUniqueID>100898744</NlmUniqueID>
<ISSNLinking>1526-498X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Bemisia tabaci</Keyword>
<Keyword MajorTopicYN="N">RNA interference</Keyword>
<Keyword MajorTopicYN="N">cytochrome P450s monooxygenase</Keyword>
<Keyword MajorTopicYN="N">flupyradifurone</Keyword>
<Keyword MajorTopicYN="N">glutathione S-transferase</Keyword>
<Keyword MajorTopicYN="N">metabolic resistance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>07</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32652864</ArticleId>
<ArticleId IdType="doi">10.1002/ps.5995</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>De Barro PJ, Liu SS, Boykin LM and Dinsdale AB, Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1-19 (2011).</Citation>
</Reference>
<Reference>
<Citation>Ahmad M, Arif MI, Ahmad Z and Denholm I, Cotton whitefly (Bemisia tabaci) resistance to organophosphate and pyrethroid insecticides in Pakistan. Pest Manag Sci 58:203-208 (2002).</Citation>
</Reference>
<Reference>
<Citation>Horowitz AR, Kontsedalov S, Denholm I and Ishaaya I, Dynamics of insecticide resistance in Bemisia tabaci: a case study with the insect growth regulator pyriproxyfen. Pest Manag Sci 58:1096-1100 (2002).</Citation>
</Reference>
<Reference>
<Citation>Cahill M, Gorman K, Day S, Denholm I, Elbert A and Nauen R, Baseline determination and detection of resistance to imidaclopridin Bemisia tabaci (Homoptera: Aleyrodidae). Bull Entomol Res 86:343-349 (1996).</Citation>
</Reference>
<Reference>
<Citation>Bass C, Denholm I, Williamson MS and Nauen R, The global status of insect resistance to neonicotinoid insecticides. Pestic Biochem Physiol 121:78-87 (2015).</Citation>
</Reference>
<Reference>
<Citation>Nauen R, Jeschke P, Velten R, Beck ME, Ebbinghaus-Kintscher U, Thielert W et al., Flupyradifurone: a brief profile of a new butenolide insecticide. Pest Manag Sci 71:850-862 (2015).</Citation>
</Reference>
<Reference>
<Citation>Barbosa PRR, Michaud JP, Bain CL and Torres JB, Toxicity of three aphicides to the generalist predators Chrysoperla carnea (Neuroptera: Chrysopidae) and Orius insidiosus (Hemiptera: Anthocoridae). Ecotoxicology 26:589-599 (2007).</Citation>
</Reference>
<Reference>
<Citation>Colares F, Michaud JP, Bain CL and Torres JB, Relative toxicity of two aphicides to Hippodamia convergens (Coleoptera: Coccinellidae): implications for integrated management of sugarcane aphid, Melanaphis sacchari (Hemiptera: Aphididae). J Econ Entomol 110:52-58 (2017).</Citation>
</Reference>
<Reference>
<Citation>Jeschke P, Nauen R, Gutbrod O, Beck ME, Matthiesen S, Haas M et al., Flupyradifurone (Sivanto™) and its novel butenolide pharmacophore: structural considerations. Pestic Biochem Physiol 121:31-38 (2015).</Citation>
</Reference>
<Reference>
<Citation>Liang PZ, Ma KS, Chen XW, Tang CY, Xia J, Chi H et al., Toxicity and sublethal effects of flupyradifurone, a novel butenolide insecticide, on the development and fecundity of Aphis gossypii (Hemiptera: Aphididae). J Econ Entomol 112:852-858 (2018).</Citation>
</Reference>
<Reference>
<Citation>Smith HG and Giurcanu MC, Residual effects of new insecticides on egg and nymph densities of Bemisia tabaci (Hemiptera: Aleyrodidae). Fla Entomol 96:504-511 (2013).</Citation>
</Reference>
<Reference>
<Citation>Coy MR, Bin L and Stelinski LL, Reversal of insecticide resistance in Florida populations of Diaphorina citri (Hemiptera: Liviidae). Fla Entomol 1:26-32 (2016).</Citation>
</Reference>
<Reference>
<Citation>Roditakis E, Stavrakaki M, Grispou M, Achimastou A, Van Waetermeulen X, Nauen R et al., Flupyradifurone effectively manages whitefly Bemisia tabaci MED (Hemiptera: Aleyrodidae) and tomato yellow leaf curl virus in tomato. Pest Manag Sci 73:1574-1584 (2017).</Citation>
</Reference>
<Reference>
<Citation>Wang R, Wang JD, Che WN, Fang Y and Luo C, Baseline susceptibility and biochemical mechanism of resistance to flupyradifurone in Bemisia tabaci. Crop Prot 132:105132 (2020).</Citation>
</Reference>
<Reference>
<Citation>Li X, Schuler MA and Berenbaum MR, Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231-253 (2007).</Citation>
</Reference>
<Reference>
<Citation>Pavlidi N, Vontas J and Van Leeuwen T, The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Curr Opin Insect Sci 27:97-102 (2018).</Citation>
</Reference>
<Reference>
<Citation>Bass C, Carvalho RA, Oliphant L, Puinean AM, Field LM, Nauen R et al., Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens. Insect Mol Biol 20:763-773 (2011).</Citation>
</Reference>
<Reference>
<Citation>Ding Z, Wen Y, Yang B, Zhang Y, Liu S, Liu Z et al., Biochemical mechanisms of imidacloprid resistance in Nilaparvata lugens: overexpression of cytochrome P450 CYP6AY1. Insect Biochem Mol Biol 43: 1021-1027 (2013).</Citation>
</Reference>
<Reference>
<Citation>Karunker I, Benting J, Lueke B, Ponge T, Nauen R, Roditakis E et al., Overexpression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem Mol Biol 38:634-644 (2008).</Citation>
</Reference>
<Reference>
<Citation>Nauen R, Vontas J, Kaussmann M and Wolfel K, Pymetrozine is hydroxylated by CYP6CM1, a cytochrome P450 conferring neonicotinoid resistance in Bemisia tabaci. Pest Manag Sci 69:457-461 (2013).</Citation>
</Reference>
<Reference>
<Citation>Meng X, Zhu C, Feng Y, Li W, Shao X, Xu Z et al., Computational insights into the different resistance mechanism of imidacloprid versus dinotefuran in Bemisia tabaci. J Agric Food Chem 64:1231-1238 (2016).</Citation>
</Reference>
<Reference>
<Citation>Yang X, Xie W, Wang SL, Wu QJ, Pan HP, Li RM et al., Two cytochrome P450 genes are involved in imidacloprid resistance in field populations of the whitefly, Bemisia tabaci, in China. Pestic Biochem Physiol 107:343-350 (2013).</Citation>
</Reference>
<Reference>
<Citation>Zhou CS, Cao Q, Li GZ and Ma DY, Role of several cytochrome P450s in the resistance and cross-resistance against imidacloprid and acetamiprid of Bemisia tabaci (Hemiptera: Aleyrodidae) MEAM1 cryptic species in Xinjiang, China. Pestic Biochem Physiol 163:209-215 (2020).</Citation>
</Reference>
<Reference>
<Citation>Kostaropoulos I, Papadopoulos AI, Metaxakis A, Boukouvala E and Papadopouloumourkidou E, Glutathione S-transferase in the defence against pyrethroids in insects. Insect Biochem Mol Biol 31:313-319 (2001).</Citation>
</Reference>
<Reference>
<Citation>Alias Z and Clark AG, Adult Drosophila melanogaster glutathione S-transferases: effects of acute treatment with methyl parathion. Pestic Biochem Phys 98:94-98 (2010).</Citation>
</Reference>
<Reference>
<Citation>Lumjuan N, Rajatileka S, Changsom D, Wicheer J, Leelapat P, Prapanthadara LA et al., The role of the Aedes aegypti epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochem Mol Biol 41:203-209 (2011).</Citation>
</Reference>
<Reference>
<Citation>Tian FJ, Li CF, Wang ZB, Liu JL and Zeng XN, Identification of detoxification genes in imidacloprid-resistant Asian citrus psyllid (Hemiptera: Lividae) and their expression patterns under stress of eight insecticides. Pest Manag Sci 75:1400-1410 (2019).</Citation>
</Reference>
<Reference>
<Citation>Yang X, He C, Xie W, Liu Y, Xia J, Yang Z et al., Glutathione S-transferasesare involved in thiamethoxam resistance in the field whitefly Bemisia tabaci Q (Hemiptera: Aleyrodidae). Pestic Biochem Physiol 134:73-78 (2016).</Citation>
</Reference>
<Reference>
<Citation>He C, Xie W, Yang X, Wang SL, Wu QJ and Zhang YJ, Identification of glutathione S-transferases in Bemisia tabaci (Hemiptera: Aleyrodidae) and evidence that GSTd7 helps explain the difference in insecticide susceptibility between B. tabaci Middle East-minor Asia 1 and Mediterranean. Insect Mol Biol 27:22-35 (2018).</Citation>
</Reference>
<Reference>
<Citation>Pan HP, Chu D, Ge DQ, Wang SL, Wu QJ, Xie W et al., Further spread of and domination by Bemisia tabaci (Hemiptera: Aleyrodidae) biotype Q on field crops in China. J Econ Entomol 104:978-985 (2011).</Citation>
</Reference>
<Reference>
<Citation>Wang R, Zheng HX, Qu C, Wang ZH, Kong ZQ and Luo C, Lethal and sublethal effects of a novel cis-nitromethylene neonicotinoid insecticide, cycloxaprid, on Bemisia tabaci. Crop Prot 83:15-19 (2016).</Citation>
</Reference>
<Reference>
<Citation>Wang Z, Yao M and Wu Y, Cross-resistance, inheritance and biochemical mechanisms of imidacloprid resistance in B-biotype Bemisia tabaci. Pest Manag Sci 65:1189-1194 (2009).</Citation>
</Reference>
<Reference>
<Citation>Bradford MM, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254 (1976).</Citation>
</Reference>
<Reference>
<Citation>Zhang BZ, Li P, Liu ZG, Fang WF, Li TP and Li Y, Biochemical and molecular mechanisms of diafenthiuron resistance in the whitefly, Bemisia tabaci. Int J Pest Manage 63:74-81 (2017).</Citation>
</Reference>
<Reference>
<Citation>Wei P, Che W, Wang J, Xiao D, Wang R and Luo C, RNA interference of glutamate-gated chloride channel decreases abamectin susceptibility in Bemisia tabaci. Pestic Biochem Physiol 145:1-7 (2018).</Citation>
</Reference>
<Reference>
<Citation>Software LO, PoloPlus: A User's Guide to Probit and Logit Analysis. LeOra Software, Berkeley, CA (2003).</Citation>
</Reference>
<Reference>
<Citation>Robertson JL, Russel RM, Preisler HK and Savin NE, Bioassays with Arthropods, 2nd edn. CRC Press, Boca Raton, FL (2007).</Citation>
</Reference>
<Reference>
<Citation>Jeschke P, Progress of modern agricultural chemistry and future prospects. Pest Manag Sci 72:433-455 (2016).</Citation>
</Reference>
<Reference>
<Citation>Sparks TC, Watson GB, Loso MR, Geng CX, Babcock JM and Thomas JD, Sulfoxaflor and the sulfoximine insecticides: chemistry, mode of action and basis for efficacy on resistant insects. Pestic Biochem Physiol 107:1-7 (2013).</Citation>
</Reference>
<Reference>
<Citation>Wen Y, Liu ZW, Bao H and Han Z, Imidacloprid resistance and its mechanisms in filed populations of brown planthoppers, Nilaparvata lugens Stål in China. Pestic Biochem Physiol 94:36-42 (2009).</Citation>
</Reference>
<Reference>
<Citation>Markussen MD and Kristensen M, Cytochrome P450 monooxygenase-mediated neonicotinoid resistance in the housefly Musca domestica L. Pestic Biochem Physiol 98:50-58 (2010).</Citation>
</Reference>
<Reference>
<Citation>Gao CF, Ma SZ, Shan CH and Wu SF, Thiamethoxam resistance selected in the western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae): cross resistance patterns, possible biochemical mechanisms and fitness cost analysis. Pestic Biochem Physiol 114:90-96 (2014).</Citation>
</Reference>
<Reference>
<Citation>Feng YT, Wu QJ, Wang SL, Chang XL, Xie W, Xu BY et al., Cross-resistance study and biochemical mechanisms of thiamethoxam resistance in B-biotype Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag Sci 66:313-318 (2010).</Citation>
</Reference>
<Reference>
<Citation>Roditakis E, Morou E, Tsagkarakou A, Riga M, Nauen R, Paine M et al., Assessment of the Bemisia tabaci CYP6CM1vQ transcript and protein levels in laboratory and field-derived imidacloprid-resistant insects and cross-metabolism potential of the recombinant enzyme. Insect Sci 18:23-29 (2011).</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantGlutaTransV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000099 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000099 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantGlutaTransV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32652864
   |texte=   Characterization of flupyradifurone resistance in the whitefly Bemisia tabaci Mediterranean (Q biotype).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32652864" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantGlutaTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:50:29 2020. Site generation: Sat Nov 21 15:50:53 2020