Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses.

Identifieur interne : 001C06 ( Main/Exploration ); précédent : 001C05; suivant : 001C07

The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses.

Auteurs : Hanhong Bae [États-Unis] ; Soo-Hyung Kim ; Moon S. Kim ; Richard C. Sicher ; David Lary ; Mary D. Strem ; Savithiry Natarajan ; Bryan A. Bailey

Source :

RBID : pubmed:18042394

Descripteurs français

English descriptors

Abstract

Drought can negatively impact pod production despite the fact that cacao production usually occurs in tropical areas having high rainfall. Polyamines (PAs) have been associated with the response of plants to drought in addition to their roles in responses to many other stresses. The constitutive and drought inducible expression patterns of genes encoding enzymes involved in PA biosynthesis were determined: an ornithine decarboxylase (TcODC), an arginine decarboxylase (TcADC), an S-adenosylmethionine decarboxylase (TcSAMDC), a spermidine synthase (TcSPDS), and a spermine synthase (TcSPMS). Expression analysis using quantitative real-time reverse transcription-PCR (QPCR) results showed that the PA biosynthesis genes were expressed in all plant tissues examined. Constitutive expression of PA biosynthesis genes was generally highest in mature leaves and open flowers. Expression of TcODC, TcADC, and TcSAMDC was induced with the onset of drought and correlated with changes in stomatal conductance, photosynthesis, photosystem II efficiency, leaf water potential and altered emission of blue-green fluorescence from cacao leaves. Induction of TcSAMDC in leaves was most closely correlated with changes in water potential. The earliest measured responses to drought were enhanced expression of TcADC and TcSAMDC in roots along with decreases in stomatal conductance, photosynthesis, and photosystem II efficiency. Elevated levels of putrescine, spermidine, and spermine were detected in cacao leaves 13days after the onset of drought. Expression of all five PA associated transcripts was enhanced (1.5-3-fold) in response to treatment with abscisic acid. TcODC and TcADC, were also responsive to mechanical wounding, infection by Phytophthora megakarya (a causal agent of black pod disease in cacao), the necrosis- and ethylene-inducing protein (Nep1) of Fusarium oxysporum, and flower abscission. TcSAMDC expression was responsive to all stresses except flower abscission. TcODC, although constitutively expressed at much lower levels than TcADC, TcSAMDC, TcSPDS, and TcSPMS, was highly inducible by the fungal protein Nep1 (135-fold) and the cacao pathogen Phytophthora megakarya (671-fold). The full length cDNA for ODC was cloned and characterized. Among the genes studied, TcODC, TcADC, and TcSAMDC were most sensitive to induction by drought in addition to other abiotic and biotic stresses. TcODC, TcADC, and TcSAMDC may share signal transduction pathways and/or the stress induced signal induction pathways may converge at these three genes leading to similar although not identical patterns of expression. It is possible altering PA levels in cacao will result in enhanced tolerance to multiple stresses including drought and disease as has been demonstrated in other crops.

DOI: 10.1016/j.plaphy.2007.10.014
PubMed: 18042394


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses.</title>
<author>
<name sortKey="Bae, Hanhong" sort="Bae, Hanhong" uniqKey="Bae H" first="Hanhong" last="Bae">Hanhong Bae</name>
<affiliation wicri:level="2">
<nlm:affiliation>US Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kim, Soo Hyung" sort="Kim, Soo Hyung" uniqKey="Kim S" first="Soo-Hyung" last="Kim">Soo-Hyung Kim</name>
</author>
<author>
<name sortKey="Kim, Moon S" sort="Kim, Moon S" uniqKey="Kim M" first="Moon S" last="Kim">Moon S. Kim</name>
</author>
<author>
<name sortKey="Sicher, Richard C" sort="Sicher, Richard C" uniqKey="Sicher R" first="Richard C" last="Sicher">Richard C. Sicher</name>
</author>
<author>
<name sortKey="Lary, David" sort="Lary, David" uniqKey="Lary D" first="David" last="Lary">David Lary</name>
</author>
<author>
<name sortKey="Strem, Mary D" sort="Strem, Mary D" uniqKey="Strem M" first="Mary D" last="Strem">Mary D. Strem</name>
</author>
<author>
<name sortKey="Natarajan, Savithiry" sort="Natarajan, Savithiry" uniqKey="Natarajan S" first="Savithiry" last="Natarajan">Savithiry Natarajan</name>
</author>
<author>
<name sortKey="Bailey, Bryan A" sort="Bailey, Bryan A" uniqKey="Bailey B" first="Bryan A" last="Bailey">Bryan A. Bailey</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18042394</idno>
<idno type="pmid">18042394</idno>
<idno type="doi">10.1016/j.plaphy.2007.10.014</idno>
<idno type="wicri:Area/Main/Corpus">001E79</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001E79</idno>
<idno type="wicri:Area/Main/Curation">001E79</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001E79</idno>
<idno type="wicri:Area/Main/Exploration">001E79</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses.</title>
<author>
<name sortKey="Bae, Hanhong" sort="Bae, Hanhong" uniqKey="Bae H" first="Hanhong" last="Bae">Hanhong Bae</name>
<affiliation wicri:level="2">
<nlm:affiliation>US Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kim, Soo Hyung" sort="Kim, Soo Hyung" uniqKey="Kim S" first="Soo-Hyung" last="Kim">Soo-Hyung Kim</name>
</author>
<author>
<name sortKey="Kim, Moon S" sort="Kim, Moon S" uniqKey="Kim M" first="Moon S" last="Kim">Moon S. Kim</name>
</author>
<author>
<name sortKey="Sicher, Richard C" sort="Sicher, Richard C" uniqKey="Sicher R" first="Richard C" last="Sicher">Richard C. Sicher</name>
</author>
<author>
<name sortKey="Lary, David" sort="Lary, David" uniqKey="Lary D" first="David" last="Lary">David Lary</name>
</author>
<author>
<name sortKey="Strem, Mary D" sort="Strem, Mary D" uniqKey="Strem M" first="Mary D" last="Strem">Mary D. Strem</name>
</author>
<author>
<name sortKey="Natarajan, Savithiry" sort="Natarajan, Savithiry" uniqKey="Natarajan S" first="Savithiry" last="Natarajan">Savithiry Natarajan</name>
</author>
<author>
<name sortKey="Bailey, Bryan A" sort="Bailey, Bryan A" uniqKey="Bailey B" first="Bryan A" last="Bailey">Bryan A. Bailey</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology and biochemistry : PPB</title>
<idno type="ISSN">0981-9428</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abscisic Acid (pharmacology)</term>
<term>Adenosylmethionine Decarboxylase (genetics)</term>
<term>Adenosylmethionine Decarboxylase (metabolism)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Cacao (genetics)</term>
<term>Cacao (metabolism)</term>
<term>Cacao (microbiology)</term>
<term>Disasters (MeSH)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Models, Biological (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oomycetes (growth & development)</term>
<term>Ornithine Decarboxylase (genetics)</term>
<term>Ornithine Decarboxylase (metabolism)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Leaves (microbiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Polyamines (metabolism)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Spermidine Synthase (genetics)</term>
<term>Spermidine Synthase (metabolism)</term>
<term>Spermine Synthase (genetics)</term>
<term>Spermine Synthase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide abscissique (pharmacologie)</term>
<term>Adenosylmethionine decarboxylase (génétique)</term>
<term>Adenosylmethionine decarboxylase (métabolisme)</term>
<term>Cacaoyer (génétique)</term>
<term>Cacaoyer (microbiologie)</term>
<term>Cacaoyer (métabolisme)</term>
<term>Catastrophes (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Oomycetes (croissance et développement)</term>
<term>Ornithine decarboxylase (génétique)</term>
<term>Ornithine decarboxylase (métabolisme)</term>
<term>Polyamines (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>RT-PCR (MeSH)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (microbiologie)</term>
<term>Racines de plante (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Spermidine synthase (génétique)</term>
<term>Spermidine synthase (métabolisme)</term>
<term>Spermine synthase (génétique)</term>
<term>Spermine synthase (métabolisme)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Adenosylmethionine Decarboxylase</term>
<term>Ornithine Decarboxylase</term>
<term>Plant Proteins</term>
<term>Spermidine Synthase</term>
<term>Spermine Synthase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosylmethionine Decarboxylase</term>
<term>Ornithine Decarboxylase</term>
<term>Plant Proteins</term>
<term>Polyamines</term>
<term>Spermidine Synthase</term>
<term>Spermine Synthase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Abscisic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cacao</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Adenosylmethionine decarboxylase</term>
<term>Cacaoyer</term>
<term>Feuilles de plante</term>
<term>Ornithine decarboxylase</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
<term>Spermidine synthase</term>
<term>Spermine synthase</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cacao</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Cacaoyer</term>
<term>Feuilles de plante</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Cacao</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adenosylmethionine decarboxylase</term>
<term>Cacaoyer</term>
<term>Feuilles de plante</term>
<term>Ornithine decarboxylase</term>
<term>Polyamines</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
<term>Spermidine synthase</term>
<term>Spermine synthase</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acide abscissique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Disasters</term>
<term>Models, Biological</term>
<term>Molecular Sequence Data</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Catastrophes</term>
<term>Données de séquences moléculaires</term>
<term>Modèles biologiques</term>
<term>RT-PCR</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Drought can negatively impact pod production despite the fact that cacao production usually occurs in tropical areas having high rainfall. Polyamines (PAs) have been associated with the response of plants to drought in addition to their roles in responses to many other stresses. The constitutive and drought inducible expression patterns of genes encoding enzymes involved in PA biosynthesis were determined: an ornithine decarboxylase (TcODC), an arginine decarboxylase (TcADC), an S-adenosylmethionine decarboxylase (TcSAMDC), a spermidine synthase (TcSPDS), and a spermine synthase (TcSPMS). Expression analysis using quantitative real-time reverse transcription-PCR (QPCR) results showed that the PA biosynthesis genes were expressed in all plant tissues examined. Constitutive expression of PA biosynthesis genes was generally highest in mature leaves and open flowers. Expression of TcODC, TcADC, and TcSAMDC was induced with the onset of drought and correlated with changes in stomatal conductance, photosynthesis, photosystem II efficiency, leaf water potential and altered emission of blue-green fluorescence from cacao leaves. Induction of TcSAMDC in leaves was most closely correlated with changes in water potential. The earliest measured responses to drought were enhanced expression of TcADC and TcSAMDC in roots along with decreases in stomatal conductance, photosynthesis, and photosystem II efficiency. Elevated levels of putrescine, spermidine, and spermine were detected in cacao leaves 13days after the onset of drought. Expression of all five PA associated transcripts was enhanced (1.5-3-fold) in response to treatment with abscisic acid. TcODC and TcADC, were also responsive to mechanical wounding, infection by Phytophthora megakarya (a causal agent of black pod disease in cacao), the necrosis- and ethylene-inducing protein (Nep1) of Fusarium oxysporum, and flower abscission. TcSAMDC expression was responsive to all stresses except flower abscission. TcODC, although constitutively expressed at much lower levels than TcADC, TcSAMDC, TcSPDS, and TcSPMS, was highly inducible by the fungal protein Nep1 (135-fold) and the cacao pathogen Phytophthora megakarya (671-fold). The full length cDNA for ODC was cloned and characterized. Among the genes studied, TcODC, TcADC, and TcSAMDC were most sensitive to induction by drought in addition to other abiotic and biotic stresses. TcODC, TcADC, and TcSAMDC may share signal transduction pathways and/or the stress induced signal induction pathways may converge at these three genes leading to similar although not identical patterns of expression. It is possible altering PA levels in cacao will result in enhanced tolerance to multiple stresses including drought and disease as has been demonstrated in other crops.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18042394</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>07</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0981-9428</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>46</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2008</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology and biochemistry : PPB</Title>
<ISOAbbreviation>Plant Physiol Biochem</ISOAbbreviation>
</Journal>
<ArticleTitle>The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses.</ArticleTitle>
<Pagination>
<MedlinePgn>174-88</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Drought can negatively impact pod production despite the fact that cacao production usually occurs in tropical areas having high rainfall. Polyamines (PAs) have been associated with the response of plants to drought in addition to their roles in responses to many other stresses. The constitutive and drought inducible expression patterns of genes encoding enzymes involved in PA biosynthesis were determined: an ornithine decarboxylase (TcODC), an arginine decarboxylase (TcADC), an S-adenosylmethionine decarboxylase (TcSAMDC), a spermidine synthase (TcSPDS), and a spermine synthase (TcSPMS). Expression analysis using quantitative real-time reverse transcription-PCR (QPCR) results showed that the PA biosynthesis genes were expressed in all plant tissues examined. Constitutive expression of PA biosynthesis genes was generally highest in mature leaves and open flowers. Expression of TcODC, TcADC, and TcSAMDC was induced with the onset of drought and correlated with changes in stomatal conductance, photosynthesis, photosystem II efficiency, leaf water potential and altered emission of blue-green fluorescence from cacao leaves. Induction of TcSAMDC in leaves was most closely correlated with changes in water potential. The earliest measured responses to drought were enhanced expression of TcADC and TcSAMDC in roots along with decreases in stomatal conductance, photosynthesis, and photosystem II efficiency. Elevated levels of putrescine, spermidine, and spermine were detected in cacao leaves 13days after the onset of drought. Expression of all five PA associated transcripts was enhanced (1.5-3-fold) in response to treatment with abscisic acid. TcODC and TcADC, were also responsive to mechanical wounding, infection by Phytophthora megakarya (a causal agent of black pod disease in cacao), the necrosis- and ethylene-inducing protein (Nep1) of Fusarium oxysporum, and flower abscission. TcSAMDC expression was responsive to all stresses except flower abscission. TcODC, although constitutively expressed at much lower levels than TcADC, TcSAMDC, TcSPDS, and TcSPMS, was highly inducible by the fungal protein Nep1 (135-fold) and the cacao pathogen Phytophthora megakarya (671-fold). The full length cDNA for ODC was cloned and characterized. Among the genes studied, TcODC, TcADC, and TcSAMDC were most sensitive to induction by drought in addition to other abiotic and biotic stresses. TcODC, TcADC, and TcSAMDC may share signal transduction pathways and/or the stress induced signal induction pathways may converge at these three genes leading to similar although not identical patterns of expression. It is possible altering PA levels in cacao will result in enhanced tolerance to multiple stresses including drought and disease as has been demonstrated in other crops.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bae</LastName>
<ForeName>Hanhong</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>US Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Soo-Hyung</ForeName>
<Initials>SH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Moon S</ForeName>
<Initials>MS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sicher</LastName>
<ForeName>Richard C</ForeName>
<Initials>RC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lary</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Strem</LastName>
<ForeName>Mary D</ForeName>
<Initials>MD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Natarajan</LastName>
<ForeName>Savithiry</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bailey</LastName>
<ForeName>Bryan A</ForeName>
<Initials>BA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>10</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>France</Country>
<MedlineTA>Plant Physiol Biochem</MedlineTA>
<NlmUniqueID>9882449</NlmUniqueID>
<ISSNLinking>0981-9428</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011073">Polyamines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>72S9A8J5GW</RegistryNumber>
<NameOfSubstance UI="D000040">Abscisic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.16</RegistryNumber>
<NameOfSubstance UI="D011436">Spermidine Synthase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.22</RegistryNumber>
<NameOfSubstance UI="D013097">Spermine Synthase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.1.1.17</RegistryNumber>
<NameOfSubstance UI="D009955">Ornithine Decarboxylase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.1.1.50</RegistryNumber>
<NameOfSubstance UI="D012437">Adenosylmethionine Decarboxylase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000040" MajorTopicYN="N">Abscisic Acid</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012437" MajorTopicYN="N">Adenosylmethionine Decarboxylase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002099" MajorTopicYN="N">Cacao</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004190" MajorTopicYN="Y">Disasters</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009868" MajorTopicYN="N">Oomycetes</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009955" MajorTopicYN="N">Ornithine Decarboxylase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011073" MajorTopicYN="N">Polyamines</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011436" MajorTopicYN="N">Spermidine Synthase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013097" MajorTopicYN="N">Spermine Synthase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>06</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18042394</ArticleId>
<ArticleId IdType="pii">S0981-9428(07)00210-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.plaphy.2007.10.014</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Bailey, Bryan A" sort="Bailey, Bryan A" uniqKey="Bailey B" first="Bryan A" last="Bailey">Bryan A. Bailey</name>
<name sortKey="Kim, Moon S" sort="Kim, Moon S" uniqKey="Kim M" first="Moon S" last="Kim">Moon S. Kim</name>
<name sortKey="Kim, Soo Hyung" sort="Kim, Soo Hyung" uniqKey="Kim S" first="Soo-Hyung" last="Kim">Soo-Hyung Kim</name>
<name sortKey="Lary, David" sort="Lary, David" uniqKey="Lary D" first="David" last="Lary">David Lary</name>
<name sortKey="Natarajan, Savithiry" sort="Natarajan, Savithiry" uniqKey="Natarajan S" first="Savithiry" last="Natarajan">Savithiry Natarajan</name>
<name sortKey="Sicher, Richard C" sort="Sicher, Richard C" uniqKey="Sicher R" first="Richard C" last="Sicher">Richard C. Sicher</name>
<name sortKey="Strem, Mary D" sort="Strem, Mary D" uniqKey="Strem M" first="Mary D" last="Strem">Mary D. Strem</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Bae, Hanhong" sort="Bae, Hanhong" uniqKey="Bae H" first="Hanhong" last="Bae">Hanhong Bae</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C06 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C06 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18042394
   |texte=   The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18042394" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024