Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Novel core promoter elements in the oomycete pathogen Phytophthora infestans and their influence on expression detected by genome-wide analysis.

Identifieur interne : 001263 ( Main/Exploration ); précédent : 001262; suivant : 001264

Novel core promoter elements in the oomycete pathogen Phytophthora infestans and their influence on expression detected by genome-wide analysis.

Auteurs : Sourav Roy [États-Unis] ; Laetitia Poidevin ; Tao Jiang ; Howard S. Judelson

Source :

RBID : pubmed:23414203

Descripteurs français

English descriptors

Abstract

BACKGROUND

The core promoter is the region flanking the transcription start site (TSS) that directs formation of the pre-initiation complex. Core promoters have been studied intensively in mammals and yeast, but not in more diverse eukaryotes. Here we investigate core promoters in oomycetes, a group within the Stramenopile kingdom that includes important plant and animal pathogens. Prior studies of a small collection of genes proposed that oomycete core promoters contain a 16 to 19 nt motif bearing an Initiator-like sequence (INR) flanked by a novel sequence named FPR, but this has not been extended to whole-genome analysis.

RESULTS

We used expectation maximization to find over-represented motifs near TSSs of Phytophthora infestans, the potato blight pathogen. The motifs corresponded to INR, FPR, and a new element found about 25 nt downstream of the TSS called DPEP. TATA boxes were not detected. Assays of DPEP function by mutagenesis were consistent with its role as a core motif. Genome-wide searches found a well-conserved combined INR+FPR in only about 13% of genes after correcting for false discovery, which contradicted prior reports that INR and FPR are found together in most genes. INR or FPR were found alone near TSSs in 18% and 7% of genes, respectively. Promoters lacking the motifs had pyrimidine-rich regions near the TSS. The combined INR+FPR motif was linked to higher than average mRNA levels, developmentally-regulated transcription, and functions related to plant infection, while DPEP and FPR were over-represented in constitutively-expressed genes. The INR, FPR, and combined INR+FPR motifs were detected in other oomycetes including Hyaloperonospora arabidopsidis, Phytophthora sojae, Pythium ultimum, and Saprolegnia parasitica, while DPEP was found in all but S. parasitica. Only INR seemed present in a non-oomycete stramenopile.

CONCLUSIONS

The absence of a TATA box and presence of novel motifs show that the oomycete core promoter is diverged from that of model systems, and likely explains the lack of activity of non-oomycete promoters in Phytophthora transformants. The association of the INR+FPR motif with developmentally-regulated genes shows that oomycete core elements influence stage-specific transcription in addition to regulating formation of the pre-initiation complex.


DOI: 10.1186/1471-2164-14-106
PubMed: 23414203
PubMed Central: PMC3599244


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Novel core promoter elements in the oomycete pathogen Phytophthora infestans and their influence on expression detected by genome-wide analysis.</title>
<author>
<name sortKey="Roy, Sourav" sort="Roy, Sourav" uniqKey="Roy S" first="Sourav" last="Roy">Sourav Roy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and Microbiology, University of California, 92521, Riverside, CA 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, University of California, 92521, Riverside, CA 92521</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Poidevin, Laetitia" sort="Poidevin, Laetitia" uniqKey="Poidevin L" first="Laetitia" last="Poidevin">Laetitia Poidevin</name>
</author>
<author>
<name sortKey="Jiang, Tao" sort="Jiang, Tao" uniqKey="Jiang T" first="Tao" last="Jiang">Tao Jiang</name>
</author>
<author>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23414203</idno>
<idno type="pmid">23414203</idno>
<idno type="doi">10.1186/1471-2164-14-106</idno>
<idno type="pmc">PMC3599244</idno>
<idno type="wicri:Area/Main/Corpus">001341</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001341</idno>
<idno type="wicri:Area/Main/Curation">001341</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001341</idno>
<idno type="wicri:Area/Main/Exploration">001341</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Novel core promoter elements in the oomycete pathogen Phytophthora infestans and their influence on expression detected by genome-wide analysis.</title>
<author>
<name sortKey="Roy, Sourav" sort="Roy, Sourav" uniqKey="Roy S" first="Sourav" last="Roy">Sourav Roy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and Microbiology, University of California, 92521, Riverside, CA 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, University of California, 92521, Riverside, CA 92521</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Poidevin, Laetitia" sort="Poidevin, Laetitia" uniqKey="Poidevin L" first="Laetitia" last="Poidevin">Laetitia Poidevin</name>
</author>
<author>
<name sortKey="Jiang, Tao" sort="Jiang, Tao" uniqKey="Jiang T" first="Tao" last="Jiang">Tao Jiang</name>
</author>
<author>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Genomics (MeSH)</term>
<term>Nucleotide Motifs (MeSH)</term>
<term>Phytophthora infestans (genetics)</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Transcription Initiation Site (MeSH)</term>
<term>Transcription, Genetic (genetics)</term>
<term>Transgenes (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Génomique (MeSH)</term>
<term>Motifs nucléotidiques (MeSH)</term>
<term>Phytophthora infestans (génétique)</term>
<term>Régions promotrices (génétique) (génétique)</term>
<term>Site d'initiation de la transcription (MeSH)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Transcription génétique (génétique)</term>
<term>Transgènes (génétique)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Phytophthora infestans</term>
<term>Promoter Regions, Genetic</term>
<term>Transcription, Genetic</term>
<term>Transgenes</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Phytophthora infestans</term>
<term>Régions promotrices (génétique)</term>
<term>Transcription génétique</term>
<term>Transgènes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Conserved Sequence</term>
<term>Evolution, Molecular</term>
<term>Gene Expression Profiling</term>
<term>Genomics</term>
<term>Nucleotide Motifs</term>
<term>Transcription Initiation Site</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Génomique</term>
<term>Motifs nucléotidiques</term>
<term>Site d'initiation de la transcription</term>
<term>Séquence conservée</term>
<term>Séquence nucléotidique</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The core promoter is the region flanking the transcription start site (TSS) that directs formation of the pre-initiation complex. Core promoters have been studied intensively in mammals and yeast, but not in more diverse eukaryotes. Here we investigate core promoters in oomycetes, a group within the Stramenopile kingdom that includes important plant and animal pathogens. Prior studies of a small collection of genes proposed that oomycete core promoters contain a 16 to 19 nt motif bearing an Initiator-like sequence (INR) flanked by a novel sequence named FPR, but this has not been extended to whole-genome analysis.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We used expectation maximization to find over-represented motifs near TSSs of Phytophthora infestans, the potato blight pathogen. The motifs corresponded to INR, FPR, and a new element found about 25 nt downstream of the TSS called DPEP. TATA boxes were not detected. Assays of DPEP function by mutagenesis were consistent with its role as a core motif. Genome-wide searches found a well-conserved combined INR+FPR in only about 13% of genes after correcting for false discovery, which contradicted prior reports that INR and FPR are found together in most genes. INR or FPR were found alone near TSSs in 18% and 7% of genes, respectively. Promoters lacking the motifs had pyrimidine-rich regions near the TSS. The combined INR+FPR motif was linked to higher than average mRNA levels, developmentally-regulated transcription, and functions related to plant infection, while DPEP and FPR were over-represented in constitutively-expressed genes. The INR, FPR, and combined INR+FPR motifs were detected in other oomycetes including Hyaloperonospora arabidopsidis, Phytophthora sojae, Pythium ultimum, and Saprolegnia parasitica, while DPEP was found in all but S. parasitica. Only INR seemed present in a non-oomycete stramenopile.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The absence of a TATA box and presence of novel motifs show that the oomycete core promoter is diverged from that of model systems, and likely explains the lack of activity of non-oomycete promoters in Phytophthora transformants. The association of the INR+FPR motif with developmentally-regulated genes shows that oomycete core elements influence stage-specific transcription in addition to regulating formation of the pre-initiation complex.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23414203</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<PubDate>
<Year>2013</Year>
<Month>Feb</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Novel core promoter elements in the oomycete pathogen Phytophthora infestans and their influence on expression detected by genome-wide analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>106</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-14-106</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The core promoter is the region flanking the transcription start site (TSS) that directs formation of the pre-initiation complex. Core promoters have been studied intensively in mammals and yeast, but not in more diverse eukaryotes. Here we investigate core promoters in oomycetes, a group within the Stramenopile kingdom that includes important plant and animal pathogens. Prior studies of a small collection of genes proposed that oomycete core promoters contain a 16 to 19 nt motif bearing an Initiator-like sequence (INR) flanked by a novel sequence named FPR, but this has not been extended to whole-genome analysis.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We used expectation maximization to find over-represented motifs near TSSs of Phytophthora infestans, the potato blight pathogen. The motifs corresponded to INR, FPR, and a new element found about 25 nt downstream of the TSS called DPEP. TATA boxes were not detected. Assays of DPEP function by mutagenesis were consistent with its role as a core motif. Genome-wide searches found a well-conserved combined INR+FPR in only about 13% of genes after correcting for false discovery, which contradicted prior reports that INR and FPR are found together in most genes. INR or FPR were found alone near TSSs in 18% and 7% of genes, respectively. Promoters lacking the motifs had pyrimidine-rich regions near the TSS. The combined INR+FPR motif was linked to higher than average mRNA levels, developmentally-regulated transcription, and functions related to plant infection, while DPEP and FPR were over-represented in constitutively-expressed genes. The INR, FPR, and combined INR+FPR motifs were detected in other oomycetes including Hyaloperonospora arabidopsidis, Phytophthora sojae, Pythium ultimum, and Saprolegnia parasitica, while DPEP was found in all but S. parasitica. Only INR seemed present in a non-oomycete stramenopile.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The absence of a TATA box and presence of novel motifs show that the oomycete core promoter is diverged from that of model systems, and likely explains the lack of activity of non-oomycete promoters in Phytophthora transformants. The association of the INR+FPR motif with developmentally-regulated genes shows that oomycete core elements influence stage-specific transcription in addition to regulating formation of the pre-initiation complex.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Roy</LastName>
<ForeName>Sourav</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Microbiology, University of California, 92521, Riverside, CA 92521, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Poidevin</LastName>
<ForeName>Laetitia</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Tao</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Judelson</LastName>
<ForeName>Howard S</ForeName>
<Initials>HS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>02</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="Y">Genomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059372" MajorTopicYN="Y">Nucleotide Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024363" MajorTopicYN="N">Transcription Initiation Site</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019076" MajorTopicYN="N">Transgenes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>11</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>01</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23414203</ArticleId>
<ArticleId IdType="pii">1471-2164-14-106</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-14-106</ArticleId>
<ArticleId IdType="pmc">PMC3599244</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Fungal Genet Biol. 2006 Jan;43(1):20-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16380277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Apr 1;31(7):1838-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Jun;2(3):465-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12796291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2003;72:449-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2004 Feb;3(1):91-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Jun 12;20(9):1464-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14962934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Jul 1;18(13):1606-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1989 Jul 15;79(2):207-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2792764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1991 Nov-Dec;4(6):602-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1804404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1992 Jun 20;225(4):985-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1377279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1992 Jul;234(1):138-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1495476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1993 Mar;23(3):211-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8382110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1993 Feb;12(2):501-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8440240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1993 Oct 29;133(1):63-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8224895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1994 Jan 28;138(1-2):67-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8125319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 May 14;93(10):4862-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8643494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1997 Mar;31(3):272-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9065391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Feb;23(2):338-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16237208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Feb 22;25(4):811-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16437157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2006 Apr;5(4):745-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16607021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006;7:114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16522199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2006 Nov;3(11):917-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17124735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2007 Mar 1;389(1):52-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17123746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2007 Jul;6(7):1200-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Oct;39(10):1235-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17873876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2007 Dec;6(12):2222-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17951514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Feb;18(2):310-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18096745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Apr;21(4):433-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18321189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Mar;20(3):720-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Jul 8;47(27):7264-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18553934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 Aug;45(8):1197-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18599326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2009 Feb;93(2):152-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18950698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2009 Mar;52(3):294-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19234558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(12):R178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19094208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2009 Feb 24;19(4):R165-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19243692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2009 May;46(5):400-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19250972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2009 Nov 11;17(11):1423-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19913474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2009 Dec 15;8(24):4127-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19946211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2010 Jan;137(1):15-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20023156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Feb;27(2):221-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19854763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(3):R33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20230619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Aug;11(8):549-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20628347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21080964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2011;712:129-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21359805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2011 Apr;31(7):1444-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 May;21(5):707-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21367940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):407-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21641854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2012 Jan;116(1):24-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22208599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e47624</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23077652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2013 Mar;18(3):157-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22939172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013 Mar;9(3):e1003182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23516354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosystems. 2000 Feb;55(1-3):5-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10745103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jul 21;275(29):22136-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10766760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2003 Mar;42(6):344-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12612808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Oct 15;25(20):3995-4003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9321649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Nov 15;11(22):3007-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Mar 1;26(5):1135-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9469818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Oct 15;274(42):29583-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2005 Apr;42(4):339-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2005;6:25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15733318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Mar;18(3):229-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15782637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Apr 15;21(8):1295-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(4):R33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833120</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Jiang, Tao" sort="Jiang, Tao" uniqKey="Jiang T" first="Tao" last="Jiang">Tao Jiang</name>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
<name sortKey="Poidevin, Laetitia" sort="Poidevin, Laetitia" uniqKey="Poidevin L" first="Laetitia" last="Poidevin">Laetitia Poidevin</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Roy, Sourav" sort="Roy, Sourav" uniqKey="Roy S" first="Sourav" last="Roy">Sourav Roy</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001263 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001263 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23414203
   |texte=   Novel core promoter elements in the oomycete pathogen Phytophthora infestans and their influence on expression detected by genome-wide analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23414203" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024