Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes.

Identifieur interne : 000C49 ( Main/Exploration ); précédent : 000C48; suivant : 000C50

Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes.

Auteurs : Fei Xia [République populaire de Chine] ; Xueying Li [République populaire de Chine] ; Xinzheng Li [République populaire de Chine] ; Desong Zheng [République populaire de Chine] ; Quanxi Sun [République populaire de Chine] ; Jiang Liu [République populaire de Chine] ; Yaxiao Li [République populaire de Chine] ; Jinping Hua [République populaire de Chine] ; Baoxiu Qi [République populaire de Chine]

Source :

RBID : pubmed:27433934

Descripteurs français

English descriptors

Abstract

Eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17) and Docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19) are nutritionally beneficial to human health. Transgenic production of EPA and DHA in oilseed crops by transferring genes originating from lower eukaryotes, such as microalgae and fungi, has been attempted in recent years. However, the low yield of EPA and DHA produced in these transgenic crops is a major hurdle for the commercialization of these transgenics. Many factors can negatively affect transgene expression, leading to a low level of converted fatty acid products. Among these the codon bias between the transgene donor and the host crop is one of the major contributing factors. Therefore, we carried out codon optimization of a fatty acid delta-6 desaturase gene PinD6 from the fungus Phytophthora infestans, and a delta-9 elongase gene, IgASE1 from the microalga Isochrysis galbana for expression in Saccharomyces cerevisiae and Arabidopsis respectively. These are the two key genes encoding enzymes for driving the first catalytic steps in the Δ6 desaturation/Δ6 elongation and the Δ9 elongation/Δ8 desaturation pathways for EPA/DHA biosynthesis. Hence expression levels of these two genes are important in determining the final yield of EPA/DHA. Via PCR-based mutagenesis we optimized the least preferred codons within the first 16 codons at their N-termini, as well as the most biased CGC codons (coding for arginine) within the entire sequences of both genes. An expression study showed that transgenic Arabidopsis plants harbouring the codon-optimized IgASE1 contained 64% more elongated fatty acid products than plants expressing the native IgASE1 sequence, whilst Saccharomyces cerevisiae expressing the codon optimized PinD6 yielded 20 times more desaturated products than yeast expressing wild-type (WT) PinD6. Thus the codon optimization strategy we developed here offers a simple, effective and low-cost alternative to whole gene synthesis for high expression of foreign genes in yeast and Arabidopsis.

DOI: 10.1371/journal.pone.0158103
PubMed: 27433934
PubMed Central: PMC4951033


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes.</title>
<author>
<name sortKey="Xia, Fei" sort="Xia, Fei" uniqKey="Xia F" first="Fei" last="Xia">Fei Xia</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000</wicri:regionArea>
<wicri:noRegion>271000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Xueying" sort="Li, Xueying" uniqKey="Li X" first="Xueying" last="Li">Xueying Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000</wicri:regionArea>
<wicri:noRegion>271000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Xinzheng" sort="Li, Xinzheng" uniqKey="Li X" first="Xinzheng" last="Li">Xinzheng Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000</wicri:regionArea>
<wicri:noRegion>271000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Desong" sort="Zheng, Desong" uniqKey="Zheng D" first="Desong" last="Zheng">Desong Zheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000</wicri:regionArea>
<wicri:noRegion>271000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Quanxi" sort="Sun, Quanxi" uniqKey="Sun Q" first="Quanxi" last="Sun">Quanxi Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000</wicri:regionArea>
<wicri:noRegion>271000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jiang" sort="Liu, Jiang" uniqKey="Liu J" first="Jiang" last="Liu">Jiang Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000</wicri:regionArea>
<wicri:noRegion>271000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Yaxiao" sort="Li, Yaxiao" uniqKey="Li Y" first="Yaxiao" last="Li">Yaxiao Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000</wicri:regionArea>
<wicri:noRegion>271000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hua, Jinping" sort="Hua, Jinping" uniqKey="Hua J" first="Jinping" last="Hua">Jinping Hua</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Genetics & Breeding, College of Agronomy and Biotechnology, China Agricultural University, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Plant Genetics & Breeding, College of Agronomy and Biotechnology, China Agricultural University, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193</wicri:regionArea>
<wicri:noRegion>100193</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qi, Baoxiu" sort="Qi, Baoxiu" uniqKey="Qi B" first="Baoxiu" last="Qi">Baoxiu Qi</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000</wicri:regionArea>
<wicri:noRegion>271000</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27433934</idno>
<idno type="pmid">27433934</idno>
<idno type="doi">10.1371/journal.pone.0158103</idno>
<idno type="pmc">PMC4951033</idno>
<idno type="wicri:Area/Main/Corpus">000B50</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B50</idno>
<idno type="wicri:Area/Main/Curation">000B50</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B50</idno>
<idno type="wicri:Area/Main/Exploration">000B50</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes.</title>
<author>
<name sortKey="Xia, Fei" sort="Xia, Fei" uniqKey="Xia F" first="Fei" last="Xia">Fei Xia</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000</wicri:regionArea>
<wicri:noRegion>271000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Xueying" sort="Li, Xueying" uniqKey="Li X" first="Xueying" last="Li">Xueying Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000</wicri:regionArea>
<wicri:noRegion>271000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Xinzheng" sort="Li, Xinzheng" uniqKey="Li X" first="Xinzheng" last="Li">Xinzheng Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000</wicri:regionArea>
<wicri:noRegion>271000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Desong" sort="Zheng, Desong" uniqKey="Zheng D" first="Desong" last="Zheng">Desong Zheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000</wicri:regionArea>
<wicri:noRegion>271000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Quanxi" sort="Sun, Quanxi" uniqKey="Sun Q" first="Quanxi" last="Sun">Quanxi Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000</wicri:regionArea>
<wicri:noRegion>271000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jiang" sort="Liu, Jiang" uniqKey="Liu J" first="Jiang" last="Liu">Jiang Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000</wicri:regionArea>
<wicri:noRegion>271000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Yaxiao" sort="Li, Yaxiao" uniqKey="Li Y" first="Yaxiao" last="Li">Yaxiao Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000</wicri:regionArea>
<wicri:noRegion>271000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hua, Jinping" sort="Hua, Jinping" uniqKey="Hua J" first="Jinping" last="Hua">Jinping Hua</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Genetics & Breeding, College of Agronomy and Biotechnology, China Agricultural University, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Plant Genetics & Breeding, College of Agronomy and Biotechnology, China Agricultural University, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193</wicri:regionArea>
<wicri:noRegion>100193</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qi, Baoxiu" sort="Qi, Baoxiu" uniqKey="Qi B" first="Baoxiu" last="Qi">Baoxiu Qi</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000</wicri:regionArea>
<wicri:noRegion>271000</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetyltransferases (genetics)</term>
<term>Acetyltransferases (metabolism)</term>
<term>Arabidopsis (enzymology)</term>
<term>Arabidopsis (genetics)</term>
<term>Base Sequence (MeSH)</term>
<term>Codon (MeSH)</term>
<term>Docosahexaenoic Acids (biosynthesis)</term>
<term>Docosahexaenoic Acids (genetics)</term>
<term>Eicosapentaenoic Acid (biosynthesis)</term>
<term>Eicosapentaenoic Acid (genetics)</term>
<term>Fatty Acid Elongases (MeSH)</term>
<term>Gene Expression Regulation (MeSH)</term>
<term>Genetic Engineering (MeSH)</term>
<term>Haptophyta (enzymology)</term>
<term>Haptophyta (genetics)</term>
<term>Linoleoyl-CoA Desaturase (genetics)</term>
<term>Linoleoyl-CoA Desaturase (metabolism)</term>
<term>Phytophthora infestans (enzymology)</term>
<term>Phytophthora infestans (genetics)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Transgenes (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acetyltransferases (génétique)</term>
<term>Acetyltransferases (métabolisme)</term>
<term>Acide docosahexaénoïque (biosynthèse)</term>
<term>Acide docosahexaénoïque (génétique)</term>
<term>Acide eicosapentanoïque (biosynthèse)</term>
<term>Acide eicosapentanoïque (génétique)</term>
<term>Arabidopsis (enzymologie)</term>
<term>Arabidopsis (génétique)</term>
<term>Codon (MeSH)</term>
<term>Génie génétique (MeSH)</term>
<term>Haptophyta (enzymologie)</term>
<term>Haptophyta (génétique)</term>
<term>Linoleoyl-CoA desaturase (génétique)</term>
<term>Linoleoyl-CoA desaturase (métabolisme)</term>
<term>Phytophthora infestans (enzymologie)</term>
<term>Phytophthora infestans (génétique)</term>
<term>Régulation de l'expression des gènes (MeSH)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Transgènes (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Docosahexaenoic Acids</term>
<term>Eicosapentaenoic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Acetyltransferases</term>
<term>Docosahexaenoic Acids</term>
<term>Eicosapentaenoic Acid</term>
<term>Linoleoyl-CoA Desaturase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acetyltransferases</term>
<term>Linoleoyl-CoA Desaturase</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Acide docosahexaénoïque</term>
<term>Acide eicosapentanoïque</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Haptophyta</term>
<term>Phytophthora infestans</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
<term>Haptophyta</term>
<term>Phytophthora infestans</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Haptophyta</term>
<term>Phytophthora infestans</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Acetyltransferases</term>
<term>Acide docosahexaénoïque</term>
<term>Acide eicosapentanoïque</term>
<term>Arabidopsis</term>
<term>Haptophyta</term>
<term>Linoleoyl-CoA desaturase</term>
<term>Phytophthora infestans</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acetyltransferases</term>
<term>Linoleoyl-CoA desaturase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Codon</term>
<term>Fatty Acid Elongases</term>
<term>Gene Expression Regulation</term>
<term>Genetic Engineering</term>
<term>Plants, Genetically Modified</term>
<term>Transgenes</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Codon</term>
<term>Génie génétique</term>
<term>Régulation de l'expression des gènes</term>
<term>Séquence nucléotidique</term>
<term>Transgènes</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17) and Docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19) are nutritionally beneficial to human health. Transgenic production of EPA and DHA in oilseed crops by transferring genes originating from lower eukaryotes, such as microalgae and fungi, has been attempted in recent years. However, the low yield of EPA and DHA produced in these transgenic crops is a major hurdle for the commercialization of these transgenics. Many factors can negatively affect transgene expression, leading to a low level of converted fatty acid products. Among these the codon bias between the transgene donor and the host crop is one of the major contributing factors. Therefore, we carried out codon optimization of a fatty acid delta-6 desaturase gene PinD6 from the fungus Phytophthora infestans, and a delta-9 elongase gene, IgASE1 from the microalga Isochrysis galbana for expression in Saccharomyces cerevisiae and Arabidopsis respectively. These are the two key genes encoding enzymes for driving the first catalytic steps in the Δ6 desaturation/Δ6 elongation and the Δ9 elongation/Δ8 desaturation pathways for EPA/DHA biosynthesis. Hence expression levels of these two genes are important in determining the final yield of EPA/DHA. Via PCR-based mutagenesis we optimized the least preferred codons within the first 16 codons at their N-termini, as well as the most biased CGC codons (coding for arginine) within the entire sequences of both genes. An expression study showed that transgenic Arabidopsis plants harbouring the codon-optimized IgASE1 contained 64% more elongated fatty acid products than plants expressing the native IgASE1 sequence, whilst Saccharomyces cerevisiae expressing the codon optimized PinD6 yielded 20 times more desaturated products than yeast expressing wild-type (WT) PinD6. Thus the codon optimization strategy we developed here offers a simple, effective and low-cost alternative to whole gene synthesis for high expression of foreign genes in yeast and Arabidopsis. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27433934</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>07</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes.</ArticleTitle>
<Pagination>
<MedlinePgn>e0158103</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0158103</ELocationID>
<Abstract>
<AbstractText>Eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17) and Docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19) are nutritionally beneficial to human health. Transgenic production of EPA and DHA in oilseed crops by transferring genes originating from lower eukaryotes, such as microalgae and fungi, has been attempted in recent years. However, the low yield of EPA and DHA produced in these transgenic crops is a major hurdle for the commercialization of these transgenics. Many factors can negatively affect transgene expression, leading to a low level of converted fatty acid products. Among these the codon bias between the transgene donor and the host crop is one of the major contributing factors. Therefore, we carried out codon optimization of a fatty acid delta-6 desaturase gene PinD6 from the fungus Phytophthora infestans, and a delta-9 elongase gene, IgASE1 from the microalga Isochrysis galbana for expression in Saccharomyces cerevisiae and Arabidopsis respectively. These are the two key genes encoding enzymes for driving the first catalytic steps in the Δ6 desaturation/Δ6 elongation and the Δ9 elongation/Δ8 desaturation pathways for EPA/DHA biosynthesis. Hence expression levels of these two genes are important in determining the final yield of EPA/DHA. Via PCR-based mutagenesis we optimized the least preferred codons within the first 16 codons at their N-termini, as well as the most biased CGC codons (coding for arginine) within the entire sequences of both genes. An expression study showed that transgenic Arabidopsis plants harbouring the codon-optimized IgASE1 contained 64% more elongated fatty acid products than plants expressing the native IgASE1 sequence, whilst Saccharomyces cerevisiae expressing the codon optimized PinD6 yielded 20 times more desaturated products than yeast expressing wild-type (WT) PinD6. Thus the codon optimization strategy we developed here offers a simple, effective and low-cost alternative to whole gene synthesis for high expression of foreign genes in yeast and Arabidopsis. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>Fei</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Xueying</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Xinzheng</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Desong</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Quanxi</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jiang</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yaxiao</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hua</LastName>
<ForeName>Jinping</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Genetics & Breeding, College of Agronomy and Biotechnology, China Agricultural University, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qi</LastName>
<ForeName>Baoxiu</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-9425-935X</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>07</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003062">Codon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>25167-62-8</RegistryNumber>
<NameOfSubstance UI="D004281">Docosahexaenoic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>AAN7QOV9EA</RegistryNumber>
<NameOfSubstance UI="D015118">Eicosapentaenoic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.19.3</RegistryNumber>
<NameOfSubstance UI="D050602">Linoleoyl-CoA Desaturase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.-</RegistryNumber>
<NameOfSubstance UI="D000123">Acetyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.-</RegistryNumber>
<NameOfSubstance UI="D000081031">Fatty Acid Elongases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000123" MajorTopicYN="N">Acetyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003062" MajorTopicYN="N">Codon</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004281" MajorTopicYN="N">Docosahexaenoic Acids</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015118" MajorTopicYN="N">Eicosapentaenoic Acid</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000081031" MajorTopicYN="N">Fatty Acid Elongases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005818" MajorTopicYN="N">Genetic Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058087" MajorTopicYN="N">Haptophyta</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050602" MajorTopicYN="N">Linoleoyl-CoA Desaturase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019076" MajorTopicYN="Y">Transgenes</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>02</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>06</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>7</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27433934</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0158103</ArticleId>
<ArticleId IdType="pii">PONE-D-16-08466</ArticleId>
<ArticleId IdType="pmc">PMC4951033</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Plant Sci. 2005 Mar;10(3):112-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1986 Jan;152(1):141-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3954036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Jan;12(1):32-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21102527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2006 May;47(1):249-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16403645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(11):e49165</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23145108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2012 Dec;21(6):1233-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22350763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 May 14;3(5):e2189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18478103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1992 Jul;13(1):18-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1503765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2004 Jan;65(2):147-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14732274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2006 Nov;50(1):49-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16962338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1977 Dec 9;198(4321):1056-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">412251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World Rev Nutr Diet. 2003;92:1-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14579680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Nov 28;376(4):647-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18801340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 Nov;83(4-5):391-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23839253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Jun 9;409(2):269-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9202159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2006 Apr;15(2):131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16604455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Protozool. 1991 Sep-Oct;38(5):441-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1920142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Jul 13;293(5528):290-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11452122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2010 Apr;19(2):221-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19582587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2003 Jan;27(1):134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Aug;49(4):1043-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12890027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jun;22(6):739-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15146198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Jul 17;547(1-3):137-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12860401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Oct;16(10):2734-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2002 Feb;24(1):18-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11812218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2005 Jan;94(1):87-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15483656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2013 Apr;97(8):3485-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23138714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2013 Sep;97(17):7689-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23229570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1995 Feb 3;245(5):467-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7844820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2008 May;59(1):94-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18289875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2002 Oct;26(1):96-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12356476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Jan;77(2):198-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24308505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2005 Aug;23(8):1013-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15951804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1982 Nov 25;10(22):7055-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6760125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1994 Nov 1;8(21):2641-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7958922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2007 Apr;74(5):1074-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17216453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2004 Jul;22(7):346-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15245907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 1994 Oct;5(5):476-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7827505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 1999 Oct;17(1):105-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10497075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Jan 16;510(3):159-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11801246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Sci Food Agric. 2013 Aug 30;93(11):2683-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23620355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUBMB Life. 2006 Oct;58(10):563-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17028087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Lipid Res. 2001 Jan-Mar;40(1-2):1-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11137568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1989 Apr 15;77(1):51-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2744487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2009 Dec;7(9):914-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19843252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 1995 Oct;6(5):494-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7579660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2003 Sep;71(9):4961-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12933838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Ther. 2004 Mar;11(6):522-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14999224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jun;135(2):859-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2010 Jul 15;10:52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20633272</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Xia, Fei" sort="Xia, Fei" uniqKey="Xia F" first="Fei" last="Xia">Fei Xia</name>
</noRegion>
<name sortKey="Hua, Jinping" sort="Hua, Jinping" uniqKey="Hua J" first="Jinping" last="Hua">Jinping Hua</name>
<name sortKey="Li, Xinzheng" sort="Li, Xinzheng" uniqKey="Li X" first="Xinzheng" last="Li">Xinzheng Li</name>
<name sortKey="Li, Xueying" sort="Li, Xueying" uniqKey="Li X" first="Xueying" last="Li">Xueying Li</name>
<name sortKey="Li, Yaxiao" sort="Li, Yaxiao" uniqKey="Li Y" first="Yaxiao" last="Li">Yaxiao Li</name>
<name sortKey="Liu, Jiang" sort="Liu, Jiang" uniqKey="Liu J" first="Jiang" last="Liu">Jiang Liu</name>
<name sortKey="Qi, Baoxiu" sort="Qi, Baoxiu" uniqKey="Qi B" first="Baoxiu" last="Qi">Baoxiu Qi</name>
<name sortKey="Sun, Quanxi" sort="Sun, Quanxi" uniqKey="Sun Q" first="Quanxi" last="Sun">Quanxi Sun</name>
<name sortKey="Zheng, Desong" sort="Zheng, Desong" uniqKey="Zheng D" first="Desong" last="Zheng">Desong Zheng</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C49 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C49 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27433934
   |texte=   Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27433934" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024