Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

PsMPK7, a stress-associated mitogen-activated protein kinase (MAPK) in Phytophthora sojae, is required for stress tolerance, reactive oxygenated species detoxification, cyst germination, sexual reproduction and infection of soybean.

Identifieur interne : 001038 ( Main/Corpus ); précédent : 001037; suivant : 001039

PsMPK7, a stress-associated mitogen-activated protein kinase (MAPK) in Phytophthora sojae, is required for stress tolerance, reactive oxygenated species detoxification, cyst germination, sexual reproduction and infection of soybean.

Auteurs : Jian Gao ; Mingna Cao ; Wenwu Ye ; Haiyang Li ; Liang Kong ; Xiaobo Zheng ; Yuanchao Wang

Source :

RBID : pubmed:24889742

English descriptors

Abstract

The sensing of stress signals and their transduction into appropriate responses are crucial for the adaptation, survival and infection of phytopathogenic fungi and oomycetes. Amongst evolutionarily conserved pathways, mitogen-activated protein kinase (MAPK) cascades function as key signal transducers that use phosphorylation to convey information. In this study, we identified a gene, designated PsMPK7, one of 14 predicted genes encoding MAPKs in Phytophthora sojae. PsMPK7 was highly transcribed in each tested stage, but was up-regulated in the zoospore, cyst and cyst germination stages. Silencing of PsMPK7 affected the growth of germinated cysts, oospore production and the pathogenicity of soybean. PsMPK7 transcription was induced by stresses from sorbitol, NaCl and hydrogen peroxide. Transformants in which PsMPK7 expression was silenced (PsMPK7-silenced) were significantly more sensitive to osmotic and oxidative stress. Aniline blue and diaminobenzidine staining revealed that the silenced lines did not suppress the host reactive oxygen species (ROS) burst, indicating that either the inoculated plants activated stronger defence responses to the transformants and/or the PsMPK7-silenced transformants failed to overcome plant defences. In addition, extracellular secretion of laccase decreased in the silenced lines. Overall, our results indicate that the PsMPK7 gene encodes a stress-associated MAPK in P. sojae that is important not only for responses to various stresses, but also for ROS detoxification, cyst germination, sexual oospore production and infection of soybean.

DOI: 10.1111/mpp.12163
PubMed: 24889742
PubMed Central: PMC6638454

Links to Exploration step

pubmed:24889742

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">PsMPK7, a stress-associated mitogen-activated protein kinase (MAPK) in Phytophthora sojae, is required for stress tolerance, reactive oxygenated species detoxification, cyst germination, sexual reproduction and infection of soybean.</title>
<author>
<name sortKey="Gao, Jian" sort="Gao, Jian" uniqKey="Gao J" first="Jian" last="Gao">Jian Gao</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cao, Mingna" sort="Cao, Mingna" uniqKey="Cao M" first="Mingna" last="Cao">Mingna Cao</name>
</author>
<author>
<name sortKey="Ye, Wenwu" sort="Ye, Wenwu" uniqKey="Ye W" first="Wenwu" last="Ye">Wenwu Ye</name>
</author>
<author>
<name sortKey="Li, Haiyang" sort="Li, Haiyang" uniqKey="Li H" first="Haiyang" last="Li">Haiyang Li</name>
</author>
<author>
<name sortKey="Kong, Liang" sort="Kong, Liang" uniqKey="Kong L" first="Liang" last="Kong">Liang Kong</name>
</author>
<author>
<name sortKey="Zheng, Xiaobo" sort="Zheng, Xiaobo" uniqKey="Zheng X" first="Xiaobo" last="Zheng">Xiaobo Zheng</name>
</author>
<author>
<name sortKey="Wang, Yuanchao" sort="Wang, Yuanchao" uniqKey="Wang Y" first="Yuanchao" last="Wang">Yuanchao Wang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:24889742</idno>
<idno type="pmid">24889742</idno>
<idno type="doi">10.1111/mpp.12163</idno>
<idno type="pmc">PMC6638454</idno>
<idno type="wicri:Area/Main/Corpus">001038</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001038</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">PsMPK7, a stress-associated mitogen-activated protein kinase (MAPK) in Phytophthora sojae, is required for stress tolerance, reactive oxygenated species detoxification, cyst germination, sexual reproduction and infection of soybean.</title>
<author>
<name sortKey="Gao, Jian" sort="Gao, Jian" uniqKey="Gao J" first="Jian" last="Gao">Jian Gao</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cao, Mingna" sort="Cao, Mingna" uniqKey="Cao M" first="Mingna" last="Cao">Mingna Cao</name>
</author>
<author>
<name sortKey="Ye, Wenwu" sort="Ye, Wenwu" uniqKey="Ye W" first="Wenwu" last="Ye">Wenwu Ye</name>
</author>
<author>
<name sortKey="Li, Haiyang" sort="Li, Haiyang" uniqKey="Li H" first="Haiyang" last="Li">Haiyang Li</name>
</author>
<author>
<name sortKey="Kong, Liang" sort="Kong, Liang" uniqKey="Kong L" first="Liang" last="Kong">Liang Kong</name>
</author>
<author>
<name sortKey="Zheng, Xiaobo" sort="Zheng, Xiaobo" uniqKey="Zheng X" first="Xiaobo" last="Zheng">Xiaobo Zheng</name>
</author>
<author>
<name sortKey="Wang, Yuanchao" sort="Wang, Yuanchao" uniqKey="Wang Y" first="Yuanchao" last="Wang">Yuanchao Wang</name>
</author>
</analytic>
<series>
<title level="j">Molecular plant pathology</title>
<idno type="eISSN">1364-3703</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (drug effects)</term>
<term>Extracellular Space (enzymology)</term>
<term>Gene Expression Regulation (drug effects)</term>
<term>Gene Silencing (drug effects)</term>
<term>Laccase (metabolism)</term>
<term>Mitogen-Activated Protein Kinases (genetics)</term>
<term>Mitogen-Activated Protein Kinases (metabolism)</term>
<term>Mycelium (drug effects)</term>
<term>Mycelium (growth & development)</term>
<term>Osmosis (drug effects)</term>
<term>Oxidation-Reduction (drug effects)</term>
<term>Phytophthora (drug effects)</term>
<term>Phytophthora (enzymology)</term>
<term>Phytophthora (pathogenicity)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Reproduction (drug effects)</term>
<term>Seedlings (microbiology)</term>
<term>Sodium Chloride (pharmacology)</term>
<term>Soybeans (drug effects)</term>
<term>Soybeans (genetics)</term>
<term>Soybeans (microbiology)</term>
<term>Spores (drug effects)</term>
<term>Spores (growth & development)</term>
<term>Stress, Physiological (drug effects)</term>
<term>Transformation, Genetic (drug effects)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Mitogen-Activated Protein Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Laccase</term>
<term>Mitogen-Activated Protein Kinases</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Gene Expression Regulation</term>
<term>Gene Silencing</term>
<term>Mycelium</term>
<term>Osmosis</term>
<term>Oxidation-Reduction</term>
<term>Phytophthora</term>
<term>Reproduction</term>
<term>Soybeans</term>
<term>Spores</term>
<term>Stress, Physiological</term>
<term>Transformation, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Extracellular Space</term>
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Mycelium</term>
<term>Spores</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Seedlings</term>
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sodium Chloride</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Plants, Genetically Modified</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The sensing of stress signals and their transduction into appropriate responses are crucial for the adaptation, survival and infection of phytopathogenic fungi and oomycetes. Amongst evolutionarily conserved pathways, mitogen-activated protein kinase (MAPK) cascades function as key signal transducers that use phosphorylation to convey information. In this study, we identified a gene, designated PsMPK7, one of 14 predicted genes encoding MAPKs in Phytophthora sojae. PsMPK7 was highly transcribed in each tested stage, but was up-regulated in the zoospore, cyst and cyst germination stages. Silencing of PsMPK7 affected the growth of germinated cysts, oospore production and the pathogenicity of soybean. PsMPK7 transcription was induced by stresses from sorbitol, NaCl and hydrogen peroxide. Transformants in which PsMPK7 expression was silenced (PsMPK7-silenced) were significantly more sensitive to osmotic and oxidative stress. Aniline blue and diaminobenzidine staining revealed that the silenced lines did not suppress the host reactive oxygen species (ROS) burst, indicating that either the inoculated plants activated stronger defence responses to the transformants and/or the PsMPK7-silenced transformants failed to overcome plant defences. In addition, extracellular secretion of laccase decreased in the silenced lines. Overall, our results indicate that the PsMPK7 gene encodes a stress-associated MAPK in P. sojae that is important not only for responses to various stresses, but also for ROS detoxification, cyst germination, sexual oospore production and infection of soybean. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24889742</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>09</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1364-3703</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Molecular plant pathology</Title>
<ISOAbbreviation>Mol Plant Pathol</ISOAbbreviation>
</Journal>
<ArticleTitle>PsMPK7, a stress-associated mitogen-activated protein kinase (MAPK) in Phytophthora sojae, is required for stress tolerance, reactive oxygenated species detoxification, cyst germination, sexual reproduction and infection of soybean.</ArticleTitle>
<Pagination>
<MedlinePgn>61-70</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/mpp.12163</ELocationID>
<Abstract>
<AbstractText>The sensing of stress signals and their transduction into appropriate responses are crucial for the adaptation, survival and infection of phytopathogenic fungi and oomycetes. Amongst evolutionarily conserved pathways, mitogen-activated protein kinase (MAPK) cascades function as key signal transducers that use phosphorylation to convey information. In this study, we identified a gene, designated PsMPK7, one of 14 predicted genes encoding MAPKs in Phytophthora sojae. PsMPK7 was highly transcribed in each tested stage, but was up-regulated in the zoospore, cyst and cyst germination stages. Silencing of PsMPK7 affected the growth of germinated cysts, oospore production and the pathogenicity of soybean. PsMPK7 transcription was induced by stresses from sorbitol, NaCl and hydrogen peroxide. Transformants in which PsMPK7 expression was silenced (PsMPK7-silenced) were significantly more sensitive to osmotic and oxidative stress. Aniline blue and diaminobenzidine staining revealed that the silenced lines did not suppress the host reactive oxygen species (ROS) burst, indicating that either the inoculated plants activated stronger defence responses to the transformants and/or the PsMPK7-silenced transformants failed to overcome plant defences. In addition, extracellular secretion of laccase decreased in the silenced lines. Overall, our results indicate that the PsMPK7 gene encodes a stress-associated MAPK in P. sojae that is important not only for responses to various stresses, but also for ROS detoxification, cyst germination, sexual oospore production and infection of soybean. </AbstractText>
<CopyrightInformation>© 2014 BSPP AND JOHN WILEY & SONS LTD.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Jian</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Mingna</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Wenwu</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Haiyang</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kong</LastName>
<ForeName>Liang</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Xiaobo</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yuanchao</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Plant Pathol</MedlineTA>
<NlmUniqueID>100954969</NlmUniqueID>
<ISSNLinking>1364-3703</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.10.3.2</RegistryNumber>
<NameOfSubstance UI="D042845">Laccase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="D020928">Mitogen-Activated Protein Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005110" MajorTopicYN="N">Extracellular Space</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020868" MajorTopicYN="N">Gene Silencing</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042845" MajorTopicYN="N">Laccase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020928" MajorTopicYN="N">Mitogen-Activated Protein Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025282" MajorTopicYN="N">Mycelium</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009995" MajorTopicYN="N">Osmosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012098" MajorTopicYN="N">Reproduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013025" MajorTopicYN="N">Soybeans</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013170" MajorTopicYN="N">Spores</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="N">Transformation, Genetic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">MAPK</Keyword>
<Keyword MajorTopicYN="N">Phytophthora sojae</Keyword>
<Keyword MajorTopicYN="N">cyst germination</Keyword>
<Keyword MajorTopicYN="N">oospore production</Keyword>
<Keyword MajorTopicYN="N">pathogenicity</Keyword>
<Keyword MajorTopicYN="N">stress-activated protein kinase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24889742</ArticleId>
<ArticleId IdType="doi">10.1111/mpp.12163</ArticleId>
<ArticleId IdType="pmc">PMC6638454</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 1999 Oct;11(10):2045-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10521531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2002 Jun;66(2):300-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12040128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Aug;45(4):1057-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12180924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Aug;45(4):1153-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12180932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Jan 2;22(1):60-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12505984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1703-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Oct;2(5):971-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Feb;51(4):925-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14763970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2004 Feb;3(1):91-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Mar;51(5):1267-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14982623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2004 Apr;198:249-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15199967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Sep;53(6):1785-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15341655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 May;56(3):638-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15819621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Aug;8(4):397-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15939662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 Jul 10;70(1):21-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1623521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Apr;18(4):1052-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16517760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2006 Apr;257(2):253-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16553861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 May;90(1):109-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Nov;19(11):1262-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17073308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2007 Feb;6(2):211-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17189492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2007 Aug;44(8):726-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17215149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2007;45:101-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17352660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2007 Aug;1773(8):1311-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17604854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Oct;8(10):813-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17848967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Jun;21(6):769-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18473669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Dec;7(12):2133-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18931042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;181(1):127-146</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19076721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nematol. 2006 Jun;38(2):173-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19259444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2009 Apr;293(2):160-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19260966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2008 Mar;3(3):153-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19513209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Dec;5(12):e1000757</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19997500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2007 Jan;8(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2010 Oct;47(10):818-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20601043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Aug;23(8):1022-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20615113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2011 Jan;13(1):62-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20812995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2011 Mar;48(3):241-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21109013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D225-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21109532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Dec;24(12):1530-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21848399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2012 Apr;102(4):348-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22185336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Apr;24(4):1327-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22517321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(11):e49495</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23166686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2014 Apr;65:14-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24480463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Dec 14;378(6558):739-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7501024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1995 Sep 1;9(17):2117-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7657164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Nov 18;79(4):583-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7954825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1996 Jan 15;378(3):207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8557102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 Jun;16(6):2870-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8649397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Oct 4;271(40):24313-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8798679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 1998 Aug;3(8):485-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9797451</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001038 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001038 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24889742
   |texte=   PsMPK7, a stress-associated mitogen-activated protein kinase (MAPK) in Phytophthora sojae, is required for stress tolerance, reactive oxygenated species detoxification, cyst germination, sexual reproduction and infection of soybean.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24889742" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024