Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Network and role analysis of autophagy in Phytophthora sojae.

Identifieur interne : 000978 ( Main/Corpus ); précédent : 000977; suivant : 000979

Network and role analysis of autophagy in Phytophthora sojae.

Auteurs : Linlin Chen ; Xiong Zhang ; Wen Wang ; Xuejing Geng ; Yan Shi ; Risong Na ; Daolong Dou ; Honglian Li

Source :

RBID : pubmed:28500315

English descriptors

Abstract

Autophagy is an evolutionarily conserved mechanism in eukaryotes with roles in development and the virulence of plant fungal pathogens. However, few reports on autophagy in oomycete species have been published. Here, we identified 26 autophagy-related genes (ATGs) belonging to 20 different groups in Phytophthora sojae using a genome-wide survey, and core ATGs in oomycetes were used to construct a preliminary autophagy pathway model. Expression profile analysis revealed that these ATGs are broadly expressed and that the majority of them significantly increase during infection stages, suggesting a central role for autophagy in virulence. Autophagy in P. sojae was detected using a GFP-PsAtg8 fusion protein and the fluorescent dye MDC during rapamycin and starvation treatment. In addition, autophagy was significantly induced during sporangium formation and cyst germination. Silencing PsAtg6a in P. sojae significantly reduced sporulation and pathogenicity. Furthermore, a PsAtg6a-silenced strain showed haustorial formation defects. These results suggested that autophagy might play essential roles in both the development and infection mechanism of P. sojae.

DOI: 10.1038/s41598-017-01988-7
PubMed: 28500315
PubMed Central: PMC5431975

Links to Exploration step

pubmed:28500315

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Network and role analysis of autophagy in Phytophthora sojae.</title>
<author>
<name sortKey="Chen, Linlin" sort="Chen, Linlin" uniqKey="Chen L" first="Linlin" last="Chen">Linlin Chen</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xiong" sort="Zhang, Xiong" uniqKey="Zhang X" first="Xiong" last="Zhang">Xiong Zhang</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wen" sort="Wang, Wen" uniqKey="Wang W" first="Wen" last="Wang">Wen Wang</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Geng, Xuejing" sort="Geng, Xuejing" uniqKey="Geng X" first="Xuejing" last="Geng">Xuejing Geng</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shi, Yan" sort="Shi, Yan" uniqKey="Shi Y" first="Yan" last="Shi">Yan Shi</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Na, Risong" sort="Na, Risong" uniqKey="Na R" first="Risong" last="Na">Risong Na</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dou, Daolong" sort="Dou, Daolong" uniqKey="Dou D" first="Daolong" last="Dou">Daolong Dou</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Honglian" sort="Li, Honglian" uniqKey="Li H" first="Honglian" last="Li">Honglian Li</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China. honglianli@sina.com.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28500315</idno>
<idno type="pmid">28500315</idno>
<idno type="doi">10.1038/s41598-017-01988-7</idno>
<idno type="pmc">PMC5431975</idno>
<idno type="wicri:Area/Main/Corpus">000978</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000978</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Network and role analysis of autophagy in Phytophthora sojae.</title>
<author>
<name sortKey="Chen, Linlin" sort="Chen, Linlin" uniqKey="Chen L" first="Linlin" last="Chen">Linlin Chen</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xiong" sort="Zhang, Xiong" uniqKey="Zhang X" first="Xiong" last="Zhang">Xiong Zhang</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wen" sort="Wang, Wen" uniqKey="Wang W" first="Wen" last="Wang">Wen Wang</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Geng, Xuejing" sort="Geng, Xuejing" uniqKey="Geng X" first="Xuejing" last="Geng">Xuejing Geng</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shi, Yan" sort="Shi, Yan" uniqKey="Shi Y" first="Yan" last="Shi">Yan Shi</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Na, Risong" sort="Na, Risong" uniqKey="Na R" first="Risong" last="Na">Risong Na</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dou, Daolong" sort="Dou, Daolong" uniqKey="Dou D" first="Daolong" last="Dou">Daolong Dou</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Honglian" sort="Li, Honglian" uniqKey="Li H" first="Honglian" last="Li">Honglian Li</name>
<affiliation>
<nlm:affiliation>Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China. honglianli@sina.com.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Animals, Genetically Modified (MeSH)</term>
<term>Autophagy (drug effects)</term>
<term>Autophagy (genetics)</term>
<term>Autophagy-Related Proteins (chemistry)</term>
<term>Autophagy-Related Proteins (genetics)</term>
<term>Autophagy-Related Proteins (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Silencing (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Phytophthora (classification)</term>
<term>Phytophthora (genetics)</term>
<term>Phytophthora (metabolism)</term>
<term>Phytophthora (pathogenicity)</term>
<term>Sirolimus (pharmacology)</term>
<term>Virulence (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Autophagy-Related Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Autophagy</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Autophagy</term>
<term>Autophagy-Related Proteins</term>
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Autophagy-Related Proteins</term>
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Animals, Genetically Modified</term>
<term>Gene Expression Profiling</term>
<term>Gene Silencing</term>
<term>Phylogeny</term>
<term>Virulence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Autophagy is an evolutionarily conserved mechanism in eukaryotes with roles in development and the virulence of plant fungal pathogens. However, few reports on autophagy in oomycete species have been published. Here, we identified 26 autophagy-related genes (ATGs) belonging to 20 different groups in Phytophthora sojae using a genome-wide survey, and core ATGs in oomycetes were used to construct a preliminary autophagy pathway model. Expression profile analysis revealed that these ATGs are broadly expressed and that the majority of them significantly increase during infection stages, suggesting a central role for autophagy in virulence. Autophagy in P. sojae was detected using a GFP-PsAtg8 fusion protein and the fluorescent dye MDC during rapamycin and starvation treatment. In addition, autophagy was significantly induced during sporangium formation and cyst germination. Silencing PsAtg6a in P. sojae significantly reduced sporulation and pathogenicity. Furthermore, a PsAtg6a-silenced strain showed haustorial formation defects. These results suggested that autophagy might play essential roles in both the development and infection mechanism of P. sojae.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28500315</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>05</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Network and role analysis of autophagy in Phytophthora sojae.</ArticleTitle>
<Pagination>
<MedlinePgn>1879</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-017-01988-7</ELocationID>
<Abstract>
<AbstractText>Autophagy is an evolutionarily conserved mechanism in eukaryotes with roles in development and the virulence of plant fungal pathogens. However, few reports on autophagy in oomycete species have been published. Here, we identified 26 autophagy-related genes (ATGs) belonging to 20 different groups in Phytophthora sojae using a genome-wide survey, and core ATGs in oomycetes were used to construct a preliminary autophagy pathway model. Expression profile analysis revealed that these ATGs are broadly expressed and that the majority of them significantly increase during infection stages, suggesting a central role for autophagy in virulence. Autophagy in P. sojae was detected using a GFP-PsAtg8 fusion protein and the fluorescent dye MDC during rapamycin and starvation treatment. In addition, autophagy was significantly induced during sporangium formation and cyst germination. Silencing PsAtg6a in P. sojae significantly reduced sporulation and pathogenicity. Furthermore, a PsAtg6a-silenced strain showed haustorial formation defects. These results suggested that autophagy might play essential roles in both the development and infection mechanism of P. sojae.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Linlin</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Xiong</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Wen</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Geng</LastName>
<ForeName>Xuejing</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Na</LastName>
<ForeName>Risong</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dou</LastName>
<ForeName>Daolong</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">0000-0001-5226-6642</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Honglian</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China. honglianli@sina.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>05</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071183">Autophagy-Related Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030801" MajorTopicYN="N">Animals, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071183" MajorTopicYN="N">Autophagy-Related Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020868" MajorTopicYN="N">Gene Silencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>09</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>04</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28500315</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-017-01988-7</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-017-01988-7</ArticleId>
<ArticleId IdType="pmc">PMC5431975</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cells. 2012 Nov;34(5):413-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22772908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2009;43:67-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19653858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2002;40:137-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Immunol. 2011 Jan;55(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21175768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 1;313(5791):1261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2016 Oct;196(1):29-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27251905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2011 Jul 27;12(7):226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21867568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2012 Jun 20;167(6):339-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22554685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2013 Jun 1;126(Pt 11):2534-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23549786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2007 Mar-Apr;3(2):106-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17204848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet Genomics. 2014 Apr 20;41(4):225-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24780621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Oct;25(10):1350-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22712506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Oct;9(10):1102-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17909521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2005 Apr;16(4):1593-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Jun 11;141(6):1042-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20550938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Oct 1;306(5693):79-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15459382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipids. 2011;2011:498768</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21490802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2007 Jan;8(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2011 Nov;7(11):1273-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21997368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 Sep;6(5):1592-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23475996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2010 Jul;11(4):463-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20618705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 1995 Jan;66(1):3-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7750517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15967-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19717456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Dec;24(12):1530-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21848399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 May;42(4):598-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15860017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2007 Oct;17 (10 ):839-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17893711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2011 Dec;13(12):1849-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21848815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2011 Mar;48(3):217-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21094265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1549-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2005 Nov;12 Suppl 2:1542-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16247502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2010 Apr;22(2):132-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20056399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Oct;27(10):1070-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24940989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Rheum Dis. 2012 Apr;71(4):575-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22084394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1991 Nov-Dec;4(6):602-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1804404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2011 Jan 15;124(Pt 2):161-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21187343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2014 Oct;32(10):1036-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25218519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Essays Biochem. 2013;55:39-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24070470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2011 Dec;7(12 ):1546-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22108003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Apr;2(2):191-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12684368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Apr 28;312(5773):580-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16645096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2014 Jan;24(1):9-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24366340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2011 Jan 1;168(1):51-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20674079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2005 Jan;3(1):47-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnology (N Y). 1993 Feb;11(2):187-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7763371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(7):R73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20626842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2015 May 5;23(5):809-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25817386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2016 Sep;57:128-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27072489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2014 Jan;24(1):24-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24366339</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000978 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000978 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28500315
   |texte=   Network and role analysis of autophagy in Phytophthora sojae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:28500315" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024