Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress.

Identifieur interne : 000684 ( Main/Corpus ); précédent : 000683; suivant : 000685

Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress.

Auteurs : Jun Cui ; Ning Jiang ; Xiaoxu Zhou ; Xinxin Hou ; Guanglei Yang ; Jun Meng ; Yushi Luan

Source :

RBID : pubmed:30132153

English descriptors

Abstract

MAIN CONCLUSION

MYB49-overexpressing tomato plants showed significant resistance to Phytophthora infestans and tolerance to drought and salt stresses. This finding reveals the potential application of tomato MYB49 in future molecular breeding. Biotic and abiotic stresses severely reduce the productivity of tomato worldwide. Therefore, it is necessary to find key genes to simultaneously improve plant resistance to pathogens and tolerance to various abiotic stresses. In this study, based on homologous relationships with Arabidopsis R2R3-MYBs (AtMYBs) involved in responses to biotic and abiotic stresses, we identified a total of 24 R2R3-MYB transcription factors in the tomato genome. Among these tomato R2R3-MYBs, MYB49 (Solyc10g008700.1) was clustered into subgroup 11 by phylogenetic analysis, and its expression level was significantly induced after treatment with P. infestans, NaCl and PEG6000. Overexpression of MYB49 in tomato significantly enhanced the resistance of tomato to P. infestans, as evidenced by decreases in the number of necrotic cells, sizes of lesion, abundance of P. infestans, and disease index. Likewise, MYB49-overexpressing transgenic tomato plants also displayed increased tolerance to drought and salt stresses. Compared to WT plants, the accumulation of reactive oxygen species (ROS), malonaldehyde content, and relative electrolyte leakage was decreased, and peroxidase activity, superoxide dismutase activity, chlorophyll content, and photosynthetic rate were increased in MYB49-overexpressing tomato plants under P. infestans, salt or drought stress. These results suggested that tomato MYB49, as a positive regulator, could enhance the capacity to scavenge ROS, inhibit cell membrane damage and cell death, and protect chloroplasts, resulting in an improvement in resistance to P. infestans and tolerance to salt and drought stresses, and they provide a candidate gene for tomato breeding to enhance biotic stress resistance and abiotic stress tolerance.


DOI: 10.1007/s00425-018-2987-6
PubMed: 30132153

Links to Exploration step

pubmed:30132153

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress.</title>
<author>
<name sortKey="Cui, Jun" sort="Cui, Jun" uniqKey="Cui J" first="Jun" last="Cui">Jun Cui</name>
<affiliation>
<nlm:affiliation>School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Ning" sort="Jiang, Ning" uniqKey="Jiang N" first="Ning" last="Jiang">Ning Jiang</name>
<affiliation>
<nlm:affiliation>School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Xiaoxu" sort="Zhou, Xiaoxu" uniqKey="Zhou X" first="Xiaoxu" last="Zhou">Xiaoxu Zhou</name>
<affiliation>
<nlm:affiliation>School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hou, Xinxin" sort="Hou, Xinxin" uniqKey="Hou X" first="Xinxin" last="Hou">Xinxin Hou</name>
<affiliation>
<nlm:affiliation>School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Guanglei" sort="Yang, Guanglei" uniqKey="Yang G" first="Guanglei" last="Yang">Guanglei Yang</name>
<affiliation>
<nlm:affiliation>School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meng, Jun" sort="Meng, Jun" uniqKey="Meng J" first="Jun" last="Meng">Jun Meng</name>
<affiliation>
<nlm:affiliation>School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China. mengjun@dlut.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Luan, Yushi" sort="Luan, Yushi" uniqKey="Luan Y" first="Yushi" last="Luan">Yushi Luan</name>
<affiliation>
<nlm:affiliation>School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China. ysluan@dlut.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30132153</idno>
<idno type="pmid">30132153</idno>
<idno type="doi">10.1007/s00425-018-2987-6</idno>
<idno type="wicri:Area/Main/Corpus">000684</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000684</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress.</title>
<author>
<name sortKey="Cui, Jun" sort="Cui, Jun" uniqKey="Cui J" first="Jun" last="Cui">Jun Cui</name>
<affiliation>
<nlm:affiliation>School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Ning" sort="Jiang, Ning" uniqKey="Jiang N" first="Ning" last="Jiang">Ning Jiang</name>
<affiliation>
<nlm:affiliation>School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Xiaoxu" sort="Zhou, Xiaoxu" uniqKey="Zhou X" first="Xiaoxu" last="Zhou">Xiaoxu Zhou</name>
<affiliation>
<nlm:affiliation>School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hou, Xinxin" sort="Hou, Xinxin" uniqKey="Hou X" first="Xinxin" last="Hou">Xinxin Hou</name>
<affiliation>
<nlm:affiliation>School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Guanglei" sort="Yang, Guanglei" uniqKey="Yang G" first="Guanglei" last="Yang">Guanglei Yang</name>
<affiliation>
<nlm:affiliation>School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meng, Jun" sort="Meng, Jun" uniqKey="Meng J" first="Jun" last="Meng">Jun Meng</name>
<affiliation>
<nlm:affiliation>School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China. mengjun@dlut.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Luan, Yushi" sort="Luan, Yushi" uniqKey="Luan Y" first="Yushi" last="Luan">Yushi Luan</name>
<affiliation>
<nlm:affiliation>School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China. ysluan@dlut.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="eISSN">1432-2048</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dehydration (MeSH)</term>
<term>Disease Resistance (MeSH)</term>
<term>Droughts (MeSH)</term>
<term>Lycopersicon esculentum (genetics)</term>
<term>Lycopersicon esculentum (immunology)</term>
<term>Lycopersicon esculentum (parasitology)</term>
<term>Lycopersicon esculentum (physiology)</term>
<term>Phylogeny (MeSH)</term>
<term>Phytophthora infestans (pathogenicity)</term>
<term>Plant Breeding (MeSH)</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Diseases (parasitology)</term>
<term>Salinity (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Water (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Lycopersicon esculentum</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Lycopersicon esculentum</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Lycopersicon esculentum</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Lycopersicon esculentum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Dehydration</term>
<term>Disease Resistance</term>
<term>Droughts</term>
<term>Phylogeny</term>
<term>Plant Breeding</term>
<term>Salinity</term>
<term>Stress, Physiological</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>MAIN CONCLUSION</b>
</p>
<p>MYB49-overexpressing tomato plants showed significant resistance to Phytophthora infestans and tolerance to drought and salt stresses. This finding reveals the potential application of tomato MYB49 in future molecular breeding. Biotic and abiotic stresses severely reduce the productivity of tomato worldwide. Therefore, it is necessary to find key genes to simultaneously improve plant resistance to pathogens and tolerance to various abiotic stresses. In this study, based on homologous relationships with Arabidopsis R2R3-MYBs (AtMYBs) involved in responses to biotic and abiotic stresses, we identified a total of 24 R2R3-MYB transcription factors in the tomato genome. Among these tomato R2R3-MYBs, MYB49 (Solyc10g008700.1) was clustered into subgroup 11 by phylogenetic analysis, and its expression level was significantly induced after treatment with P. infestans, NaCl and PEG6000. Overexpression of MYB49 in tomato significantly enhanced the resistance of tomato to P. infestans, as evidenced by decreases in the number of necrotic cells, sizes of lesion, abundance of P. infestans, and disease index. Likewise, MYB49-overexpressing transgenic tomato plants also displayed increased tolerance to drought and salt stresses. Compared to WT plants, the accumulation of reactive oxygen species (ROS), malonaldehyde content, and relative electrolyte leakage was decreased, and peroxidase activity, superoxide dismutase activity, chlorophyll content, and photosynthetic rate were increased in MYB49-overexpressing tomato plants under P. infestans, salt or drought stress. These results suggested that tomato MYB49, as a positive regulator, could enhance the capacity to scavenge ROS, inhibit cell membrane damage and cell death, and protect chloroplasts, resulting in an improvement in resistance to P. infestans and tolerance to salt and drought stresses, and they provide a candidate gene for tomato breeding to enhance biotic stress resistance and abiotic stress tolerance.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30132153</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2048</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>248</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2018</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress.</ArticleTitle>
<Pagination>
<MedlinePgn>1487-1503</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00425-018-2987-6</ELocationID>
<Abstract>
<AbstractText Label="MAIN CONCLUSION" NlmCategory="UNASSIGNED">MYB49-overexpressing tomato plants showed significant resistance to Phytophthora infestans and tolerance to drought and salt stresses. This finding reveals the potential application of tomato MYB49 in future molecular breeding. Biotic and abiotic stresses severely reduce the productivity of tomato worldwide. Therefore, it is necessary to find key genes to simultaneously improve plant resistance to pathogens and tolerance to various abiotic stresses. In this study, based on homologous relationships with Arabidopsis R2R3-MYBs (AtMYBs) involved in responses to biotic and abiotic stresses, we identified a total of 24 R2R3-MYB transcription factors in the tomato genome. Among these tomato R2R3-MYBs, MYB49 (Solyc10g008700.1) was clustered into subgroup 11 by phylogenetic analysis, and its expression level was significantly induced after treatment with P. infestans, NaCl and PEG6000. Overexpression of MYB49 in tomato significantly enhanced the resistance of tomato to P. infestans, as evidenced by decreases in the number of necrotic cells, sizes of lesion, abundance of P. infestans, and disease index. Likewise, MYB49-overexpressing transgenic tomato plants also displayed increased tolerance to drought and salt stresses. Compared to WT plants, the accumulation of reactive oxygen species (ROS), malonaldehyde content, and relative electrolyte leakage was decreased, and peroxidase activity, superoxide dismutase activity, chlorophyll content, and photosynthetic rate were increased in MYB49-overexpressing tomato plants under P. infestans, salt or drought stress. These results suggested that tomato MYB49, as a positive regulator, could enhance the capacity to scavenge ROS, inhibit cell membrane damage and cell death, and protect chloroplasts, resulting in an improvement in resistance to P. infestans and tolerance to salt and drought stresses, and they provide a candidate gene for tomato breeding to enhance biotic stress resistance and abiotic stress tolerance.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cui</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Ning</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Xiaoxu</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hou</LastName>
<ForeName>Xinxin</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Guanglei</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meng</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China. mengjun@dlut.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Luan</LastName>
<ForeName>Yushi</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China. ysluan@dlut.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>31471880</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>61472061</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>08</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003681" MajorTopicYN="N">Dehydration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="Y">Disease Resistance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018551" MajorTopicYN="N">Lycopersicon esculentum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069600" MajorTopicYN="N">Plant Breeding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054712" MajorTopicYN="N">Salinity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Biotic and abiotic stresses</Keyword>
<Keyword MajorTopicYN="N">MYB</Keyword>
<Keyword MajorTopicYN="N">Resistance</Keyword>
<Keyword MajorTopicYN="N">Tolerance</Keyword>
<Keyword MajorTopicYN="N">Tomato</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>02</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30132153</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-018-2987-6</ArticleId>
<ArticleId IdType="pii">10.1007/s00425-018-2987-6</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2009 Apr;58(2):347-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19143995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D344-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23161676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yi Chuan. 2003 May;25(3):317-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15639879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2015 Feb;231:198-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25576005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2018 Mar 1;5:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29507733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Apr;66(1):94-116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21443626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 May;153(1):185-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20335401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1987 Dec 1;6(12):3553-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3428265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Mar;146(3):1293-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18218967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2018 Apr;131(4):787-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29234827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2014 Oct;41(10):6769-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25008995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(Database issue):D257-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25300481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jul 26;8(7):e69955</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23950843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2015 Dec;242(6):1291-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26202734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Jan 23;16:17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25613160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Mar 25;9(3):e92913</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24667379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Apr;58(2):275-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19170933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2014 Mar 15;538(1):46-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24440241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Jun 21;13(6):e0199192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29927971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jun;56(416):1449-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15863449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(7):R46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15239831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2006 Nov;1(6):305-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19517001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1415-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2009 Jan;11(1):90-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19121118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Apr 15;31(8):1296-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25504850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2014 Jun;127(6):1353-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24756242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2016 Aug 10;3:16035</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27555919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Apr;149(4):1761-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19211694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2001 Oct;4(5):447-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11597504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2013 Jun;207:79-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23602102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2016 Nov;129(11):2019-2042</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27738714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 May 26;95(11):5857-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9600884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2017 Nov 29;4:17063</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29214028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jan 1;30(1):325-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Apr 22;5:151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24795738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2017 Mar;112:302-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28126679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Oct;15(10):573-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20674465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Dec;148(4):1938-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18931143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Sep 21;7(1):12087</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28935951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Dec;196(4):1155-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23046089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2018 Jan;247(1):127-138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28884358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2017 Jul;214:81-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28460279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e37463</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22719841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2014 Aug 15;547(1):145-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24971506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2015 Jul;236:146-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26025528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Feb;89(3):577-589</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27801966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6428-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1631139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Jun;90(5):856-867</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27801967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1988 Oct 25;16(20):9877</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3186459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2012 Apr;31(4):661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22083650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2014 Oct;55(10):1802-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25146486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Mol Biol Plants. 2013 Jul;19(3):307-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24431500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Oct 25;6:35858</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27779242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2017 Aug 22;17(1):142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28830364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e59924</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23533660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2011 Sep;9(7):736-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21114612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2012 May 25;422(1):181-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22575450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Sep;66(19):5997-6008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26139822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Jul;17(7):763-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15242170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Jun;206(4):1364-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25250741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2017 Oct 1;58(10):1777-1788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29016897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Sep 26;8:1659</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29018467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2017 Sep 30;491(4):1034-1039</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28780355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Sep 04;6:686</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26388886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Jul 09;12:106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22776508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Biol. 2010 May;31(3):261-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21046993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Feb;35(2):259-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21486305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2014 Dec;289(6):1183-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25005853</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000684 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000684 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30132153
   |texte=   Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30132153" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024