Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative Transcriptome Profiling Reveals Compatible and Incompatible Patterns of Potato Toward Phytophthora infestans.

Identifieur interne : 000328 ( Main/Corpus ); précédent : 000327; suivant : 000329

Comparative Transcriptome Profiling Reveals Compatible and Incompatible Patterns of Potato Toward Phytophthora infestans.

Auteurs : Yanfeng Duan ; Shaoguang Duan ; Miles R. Armstrong ; Jianfei Xu ; Jiayi Zheng ; Jun Hu ; Xinwei Chen ; Ingo Hein ; Guangcun Li ; Liping Jin

Source :

RBID : pubmed:31818876

Abstract

Late blight, caused by Phytophthora infestans (P. infestans), is a devastating disease in potato worldwide. Our previous study revealed that the Solanum andigena genotype 03112-233 is resistant to P. infestans isolate 90128, but susceptible to the super race isolate, CN152. In this study, we confirmed by diagnostic resistance gene enrichment sequencing (dRenSeq) that the resistance of 03112-233 toward 90128 is most likely based on a distinct new R gene(s). To gain an insight into the mechanism that governs resistance or susceptibility in 03112-223, comparative transcriptomic profiling analysis based on RNAseq was initiated. Changes in transcription at two time points (24 h and 72 h) after inoculation with isolates 90128 or CN152 were analyzed. A total of 8,881 and 7,209 genes were differentially expressed in response to 90128 and CN152, respectively, and 1,083 differentially expressed genes (DEGs) were common to both time points and isolates. A substantial number of genes were differentially expressed in an isolate-specific manner with 3,837 genes showing induction or suppression following infection with 90128 and 2,165 genes induced or suppressed after colonization by CN152. Hierarchical clustering analysis suggested that isolates with different virulence profiles can induce different defense responses at different time points. Further analysis revealed that the compatible interaction caused higher induction of susceptibility genes such as SWEET compared with the incompatible interaction. The salicylic acid, jasmonic acid, and abscisic acid mediated signaling pathways were involved in the response against both isolates, while ethylene and brassinosteroids mediated defense pathways were suppressed. Our results provide a valuable resource for understanding the interactions between P. infestans and potato.

DOI: 10.1534/g3.119.400818
PubMed: 31818876
PubMed Central: PMC7003068

Links to Exploration step

pubmed:31818876

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative Transcriptome Profiling Reveals Compatible and Incompatible Patterns of Potato Toward
<i>Phytophthora infestans</i>
.</title>
<author>
<name sortKey="Duan, Yanfeng" sort="Duan, Yanfeng" uniqKey="Duan Y" first="Yanfeng" last="Duan">Yanfeng Duan</name>
<affiliation>
<nlm:affiliation>Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duan, Shaoguang" sort="Duan, Shaoguang" uniqKey="Duan S" first="Shaoguang" last="Duan">Shaoguang Duan</name>
<affiliation>
<nlm:affiliation>Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Armstrong, Miles R" sort="Armstrong, Miles R" uniqKey="Armstrong M" first="Miles R" last="Armstrong">Miles R. Armstrong</name>
<affiliation>
<nlm:affiliation>The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, DD2 5DA, UK, and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xu, Jianfei" sort="Xu, Jianfei" uniqKey="Xu J" first="Jianfei" last="Xu">Jianfei Xu</name>
<affiliation>
<nlm:affiliation>Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Jiayi" sort="Zheng, Jiayi" uniqKey="Zheng J" first="Jiayi" last="Zheng">Jiayi Zheng</name>
<affiliation>
<nlm:affiliation>Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jun" sort="Hu, Jun" uniqKey="Hu J" first="Jun" last="Hu">Jun Hu</name>
<affiliation>
<nlm:affiliation>Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xinwei" sort="Chen, Xinwei" uniqKey="Chen X" first="Xinwei" last="Chen">Xinwei Chen</name>
<affiliation>
<nlm:affiliation>Cell and Molecular Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hein, Ingo" sort="Hein, Ingo" uniqKey="Hein I" first="Ingo" last="Hein">Ingo Hein</name>
<affiliation>
<nlm:affiliation>The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, DD2 5DA, UK, and.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Cell and Molecular Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Guangcun" sort="Li, Guangcun" uniqKey="Li G" first="Guangcun" last="Li">Guangcun Li</name>
<affiliation>
<nlm:affiliation>Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China, liguangcun@caas.cn jinliping@caas.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jin, Liping" sort="Jin, Liping" uniqKey="Jin L" first="Liping" last="Jin">Liping Jin</name>
<affiliation>
<nlm:affiliation>Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China, liguangcun@caas.cn jinliping@caas.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31818876</idno>
<idno type="pmid">31818876</idno>
<idno type="doi">10.1534/g3.119.400818</idno>
<idno type="pmc">PMC7003068</idno>
<idno type="wicri:Area/Main/Corpus">000328</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000328</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative Transcriptome Profiling Reveals Compatible and Incompatible Patterns of Potato Toward
<i>Phytophthora infestans</i>
.</title>
<author>
<name sortKey="Duan, Yanfeng" sort="Duan, Yanfeng" uniqKey="Duan Y" first="Yanfeng" last="Duan">Yanfeng Duan</name>
<affiliation>
<nlm:affiliation>Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duan, Shaoguang" sort="Duan, Shaoguang" uniqKey="Duan S" first="Shaoguang" last="Duan">Shaoguang Duan</name>
<affiliation>
<nlm:affiliation>Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Armstrong, Miles R" sort="Armstrong, Miles R" uniqKey="Armstrong M" first="Miles R" last="Armstrong">Miles R. Armstrong</name>
<affiliation>
<nlm:affiliation>The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, DD2 5DA, UK, and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xu, Jianfei" sort="Xu, Jianfei" uniqKey="Xu J" first="Jianfei" last="Xu">Jianfei Xu</name>
<affiliation>
<nlm:affiliation>Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Jiayi" sort="Zheng, Jiayi" uniqKey="Zheng J" first="Jiayi" last="Zheng">Jiayi Zheng</name>
<affiliation>
<nlm:affiliation>Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jun" sort="Hu, Jun" uniqKey="Hu J" first="Jun" last="Hu">Jun Hu</name>
<affiliation>
<nlm:affiliation>Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xinwei" sort="Chen, Xinwei" uniqKey="Chen X" first="Xinwei" last="Chen">Xinwei Chen</name>
<affiliation>
<nlm:affiliation>Cell and Molecular Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hein, Ingo" sort="Hein, Ingo" uniqKey="Hein I" first="Ingo" last="Hein">Ingo Hein</name>
<affiliation>
<nlm:affiliation>The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, DD2 5DA, UK, and.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Cell and Molecular Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Guangcun" sort="Li, Guangcun" uniqKey="Li G" first="Guangcun" last="Li">Guangcun Li</name>
<affiliation>
<nlm:affiliation>Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China, liguangcun@caas.cn jinliping@caas.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jin, Liping" sort="Jin, Liping" uniqKey="Jin L" first="Liping" last="Jin">Liping Jin</name>
<affiliation>
<nlm:affiliation>Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China, liguangcun@caas.cn jinliping@caas.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">G3 (Bethesda, Md.)</title>
<idno type="eISSN">2160-1836</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Late blight, caused by
<i>Phytophthora infestans</i>
(
<i>P. infestans</i>
), is a devastating disease in potato worldwide. Our previous study revealed that the
<i>Solanum andigena</i>
genotype 03112-233 is resistant to
<i>P. infestans</i>
isolate 90128, but susceptible to the super race isolate, CN152. In this study, we confirmed by diagnostic resistance gene enrichment sequencing (dRenSeq) that the resistance of 03112-233 toward 90128 is most likely based on a distinct new
<i>R</i>
gene(s). To gain an insight into the mechanism that governs resistance or susceptibility in 03112-223, comparative transcriptomic profiling analysis based on RNAseq was initiated. Changes in transcription at two time points (24 h and 72 h) after inoculation with isolates 90128 or CN152 were analyzed. A total of 8,881 and 7,209 genes were differentially expressed in response to 90128 and CN152, respectively, and 1,083 differentially expressed genes (DEGs) were common to both time points and isolates. A substantial number of genes were differentially expressed in an isolate-specific manner with 3,837 genes showing induction or suppression following infection with 90128 and 2,165 genes induced or suppressed after colonization by CN152. Hierarchical clustering analysis suggested that isolates with different virulence profiles can induce different defense responses at different time points. Further analysis revealed that the compatible interaction caused higher induction of susceptibility genes such as
<i>SWEET</i>
compared with the incompatible interaction. The salicylic acid, jasmonic acid, and abscisic acid mediated signaling pathways were involved in the response against both isolates, while ethylene and brassinosteroids mediated defense pathways were suppressed. Our results provide a valuable resource for understanding the interactions between
<i>P. infestans</i>
and potato.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31818876</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2160-1836</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>02</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>G3 (Bethesda, Md.)</Title>
<ISOAbbreviation>G3 (Bethesda)</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative Transcriptome Profiling Reveals Compatible and Incompatible Patterns of Potato Toward
<i>Phytophthora infestans</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>623-634</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/g3.119.400818</ELocationID>
<Abstract>
<AbstractText>Late blight, caused by
<i>Phytophthora infestans</i>
(
<i>P. infestans</i>
), is a devastating disease in potato worldwide. Our previous study revealed that the
<i>Solanum andigena</i>
genotype 03112-233 is resistant to
<i>P. infestans</i>
isolate 90128, but susceptible to the super race isolate, CN152. In this study, we confirmed by diagnostic resistance gene enrichment sequencing (dRenSeq) that the resistance of 03112-233 toward 90128 is most likely based on a distinct new
<i>R</i>
gene(s). To gain an insight into the mechanism that governs resistance or susceptibility in 03112-223, comparative transcriptomic profiling analysis based on RNAseq was initiated. Changes in transcription at two time points (24 h and 72 h) after inoculation with isolates 90128 or CN152 were analyzed. A total of 8,881 and 7,209 genes were differentially expressed in response to 90128 and CN152, respectively, and 1,083 differentially expressed genes (DEGs) were common to both time points and isolates. A substantial number of genes were differentially expressed in an isolate-specific manner with 3,837 genes showing induction or suppression following infection with 90128 and 2,165 genes induced or suppressed after colonization by CN152. Hierarchical clustering analysis suggested that isolates with different virulence profiles can induce different defense responses at different time points. Further analysis revealed that the compatible interaction caused higher induction of susceptibility genes such as
<i>SWEET</i>
compared with the incompatible interaction. The salicylic acid, jasmonic acid, and abscisic acid mediated signaling pathways were involved in the response against both isolates, while ethylene and brassinosteroids mediated defense pathways were suppressed. Our results provide a valuable resource for understanding the interactions between
<i>P. infestans</i>
and potato.</AbstractText>
<CopyrightInformation>Copyright © 2020 Duan et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Duan</LastName>
<ForeName>Yanfeng</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Duan</LastName>
<ForeName>Shaoguang</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Armstrong</LastName>
<ForeName>Miles R</ForeName>
<Initials>MR</Initials>
<AffiliationInfo>
<Affiliation>The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, DD2 5DA, UK, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Jianfei</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Jiayi</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xinwei</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Cell and Molecular Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hein</LastName>
<ForeName>Ingo</ForeName>
<Initials>I</Initials>
<Identifier Source="ORCID">0000-0002-0128-2084</Identifier>
<AffiliationInfo>
<Affiliation>The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, DD2 5DA, UK, and.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Cell and Molecular Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Guangcun</ForeName>
<Initials>G</Initials>
<Identifier Source="ORCID">0000-0003-2024-9914</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China, liguangcun@caas.cn jinliping@caas.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jin</LastName>
<ForeName>Liping</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0001-9119-3474</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China, liguangcun@caas.cn jinliping@caas.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>G3 (Bethesda)</MedlineTA>
<NlmUniqueID>101566598</NlmUniqueID>
<ISSNLinking>2160-1836</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Phytophthora infestans</Keyword>
<Keyword MajorTopicYN="Y">Potato</Keyword>
<Keyword MajorTopicYN="Y">RNAseq</Keyword>
<Keyword MajorTopicYN="Y">dRenSeq</Keyword>
<Keyword MajorTopicYN="Y">late blight</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31818876</ArticleId>
<ArticleId IdType="pii">g3.119.400818</ArticleId>
<ArticleId IdType="doi">10.1534/g3.119.400818</ArticleId>
<ArticleId IdType="pmc">PMC7003068</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2015 Jan 15;31(2):166-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25260700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 May;9(3):385-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 May 23;14:340</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23702331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2018 Jan 31;19(1):108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29385986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(2):R14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20132535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Oct 19;5:15229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26477733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Feb;15(2):317-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2015 Nov;15(6):697-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26077032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2013;51:291-319</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23682913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Feb;8(2):203-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12239383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 May 12;165(3):1302-1314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24820026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Feb;16(2):141-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12575748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2017;1533:1-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27987162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Mar;164(3):1443-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24443525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Sep 17;6:718</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26442032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2016 Jan;129(1):105-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26518573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Mar 14;495(7440):246-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23467094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Sep;18(9):913-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16167762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2019 Apr;132(4):1283-1294</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30666393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 May 24;8:15588</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28537271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Aug;29(8):1883-1906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28733419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2018 Mar 24;69(7):1545-1555</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29385612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(10):R106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20979621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics Proteomics Bioinformatics. 2017 Feb;15(1):14-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28387199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2019 Feb;17(2):540-549</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30107090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2014 Jun;10(6):450-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24776930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Mar 02;19(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29498672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Dec;14(12):1444-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11768540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Mar;7(3):400-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22476463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2017 Jan;30(1):45-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27957885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Oct 1;21(19):3787-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15817693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Apr;50(1):128-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17397508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Jun 11;19(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29891775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Feb 10;19(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29439444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Apr;12(4):357-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25751142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Jun 19;15:497</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24947944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2015 May;128(5):931-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25725999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Apr;170(4):2392-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26869704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2018 Jun 27;6:e4976</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29967718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2014 Nov;127(11):2279-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25186170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jan 4;46(D1):D14-D20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29036542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:135-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16602946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Mar;15(3):760-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Nov;200(3):808-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23879865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2000 Oct;16(10):449-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11050331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Nov 14;4:423</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24294214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Jan 26;19(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29373527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jan;57(2):230-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18801014</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000328 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000328 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31818876
   |texte=   Comparative Transcriptome Profiling Reveals Compatible and Incompatible Patterns of Potato Toward Phytophthora infestans.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31818876" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024