Serveur d'exploration sur les effecteurs du phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members.

Identifieur interne : 000286 ( Main/Exploration ); précédent : 000285; suivant : 000287

RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members.

Auteurs : Rays H Y. Jiang [États-Unis] ; Sucheta Tripathy ; Francine Govers ; Brett M. Tyler

Source :

RBID : pubmed:18344324

Descripteurs français

English descriptors

Abstract

Pathogens secrete effector molecules that facilitate the infection of their hosts. A number of effectors identified in plant pathogenic Phytophthora species possess N-terminal motifs (RXLR-dEER) required for targeting these effectors into host cells. Here, we bioinformatically identify >370 candidate effector genes in each of the genomes of P. sojae and P. ramorum. A single superfamily, termed avirulence homolog (Avh) genes, accounts for most of the effectors. The Avh proteins show extensive sequence divergence but are all related and likely evolved from a common ancestor by rapid duplication and divergence. More than half of the Avh proteins contain conserved C-terminal motifs (termed W, Y, and L) that are usually arranged as a module that can be repeated up to eight times. The Avh genes belong to the most rapidly evolving part of the genome, and they are nearly always located at synteny breakpoints. The superfamily includes all experimentally identified oomycete effector and avirulence genes, and its rapid pace of evolution is consistent with a role for Avh proteins in interaction with plant hosts.

DOI: 10.1073/pnas.0709303105
PubMed: 18344324
PubMed Central: PMC2290801


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members.</title>
<author>
<name sortKey="Jiang, Rays H Y" sort="Jiang, Rays H Y" uniqKey="Jiang R" first="Rays H Y" last="Jiang">Rays H Y. Jiang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tripathy, Sucheta" sort="Tripathy, Sucheta" uniqKey="Tripathy S" first="Sucheta" last="Tripathy">Sucheta Tripathy</name>
</author>
<author>
<name sortKey="Govers, Francine" sort="Govers, Francine" uniqKey="Govers F" first="Francine" last="Govers">Francine Govers</name>
</author>
<author>
<name sortKey="Tyler, Brett M" sort="Tyler, Brett M" uniqKey="Tyler B" first="Brett M" last="Tyler">Brett M. Tyler</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18344324</idno>
<idno type="pmid">18344324</idno>
<idno type="doi">10.1073/pnas.0709303105</idno>
<idno type="pmc">PMC2290801</idno>
<idno type="wicri:Area/Main/Corpus">000290</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000290</idno>
<idno type="wicri:Area/Main/Curation">000290</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000290</idno>
<idno type="wicri:Area/Main/Exploration">000290</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members.</title>
<author>
<name sortKey="Jiang, Rays H Y" sort="Jiang, Rays H Y" uniqKey="Jiang R" first="Rays H Y" last="Jiang">Rays H Y. Jiang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tripathy, Sucheta" sort="Tripathy, Sucheta" uniqKey="Tripathy S" first="Sucheta" last="Tripathy">Sucheta Tripathy</name>
</author>
<author>
<name sortKey="Govers, Francine" sort="Govers, Francine" uniqKey="Govers F" first="Francine" last="Govers">Francine Govers</name>
</author>
<author>
<name sortKey="Tyler, Brett M" sort="Tyler, Brett M" uniqKey="Tyler B" first="Brett M" last="Tyler">Brett M. Tyler</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algal Proteins (chemistry)</term>
<term>Amino Acid Motifs (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Rearrangement (MeSH)</term>
<term>Genome (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phytophthora (chemistry)</term>
<term>Phytophthora (genetics)</term>
<term>Phytophthora (pathogenicity)</term>
<term>Polymorphism, Genetic (MeSH)</term>
<term>Synteny (MeSH)</term>
<term>Virulence (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Données de séquences moléculaires (MeSH)</term>
<term>Génome (MeSH)</term>
<term>Motifs d'acides aminés (MeSH)</term>
<term>Phytophthora ()</term>
<term>Phytophthora (génétique)</term>
<term>Phytophthora (pathogénicité)</term>
<term>Polymorphisme génétique (MeSH)</term>
<term>Protéines d'algue ()</term>
<term>Réarrangement des gènes (MeSH)</term>
<term>Synténie (MeSH)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Virulence (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Algal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Conserved Sequence</term>
<term>Evolution, Molecular</term>
<term>Gene Rearrangement</term>
<term>Genome</term>
<term>Molecular Sequence Data</term>
<term>Polymorphism, Genetic</term>
<term>Synteny</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Génome</term>
<term>Motifs d'acides aminés</term>
<term>Phytophthora</term>
<term>Polymorphisme génétique</term>
<term>Protéines d'algue</term>
<term>Réarrangement des gènes</term>
<term>Synténie</term>
<term>Séquence conservée</term>
<term>Séquence d'acides aminés</term>
<term>Virulence</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Pathogens secrete effector molecules that facilitate the infection of their hosts. A number of effectors identified in plant pathogenic Phytophthora species possess N-terminal motifs (RXLR-dEER) required for targeting these effectors into host cells. Here, we bioinformatically identify >370 candidate effector genes in each of the genomes of P. sojae and P. ramorum. A single superfamily, termed avirulence homolog (Avh) genes, accounts for most of the effectors. The Avh proteins show extensive sequence divergence but are all related and likely evolved from a common ancestor by rapid duplication and divergence. More than half of the Avh proteins contain conserved C-terminal motifs (termed W, Y, and L) that are usually arranged as a module that can be repeated up to eight times. The Avh genes belong to the most rapidly evolving part of the genome, and they are nearly always located at synteny breakpoints. The superfamily includes all experimentally identified oomycete effector and avirulence genes, and its rapid pace of evolution is consistent with a role for Avh proteins in interaction with plant hosts.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18344324</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>04</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>105</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2008</Year>
<Month>Mar</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members.</ArticleTitle>
<Pagination>
<MedlinePgn>4874-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.0709303105</ELocationID>
<Abstract>
<AbstractText>Pathogens secrete effector molecules that facilitate the infection of their hosts. A number of effectors identified in plant pathogenic Phytophthora species possess N-terminal motifs (RXLR-dEER) required for targeting these effectors into host cells. Here, we bioinformatically identify >370 candidate effector genes in each of the genomes of P. sojae and P. ramorum. A single superfamily, termed avirulence homolog (Avh) genes, accounts for most of the effectors. The Avh proteins show extensive sequence divergence but are all related and likely evolved from a common ancestor by rapid duplication and divergence. More than half of the Avh proteins contain conserved C-terminal motifs (termed W, Y, and L) that are usually arranged as a module that can be repeated up to eight times. The Avh genes belong to the most rapidly evolving part of the genome, and they are nearly always located at synteny breakpoints. The superfamily includes all experimentally identified oomycete effector and avirulence genes, and its rapid pace of evolution is consistent with a role for Avh proteins in interaction with plant hosts.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Rays H Y</ForeName>
<Initials>RH</Initials>
<AffiliationInfo>
<Affiliation>Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tripathy</LastName>
<ForeName>Sucheta</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Govers</LastName>
<ForeName>Francine</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tyler</LastName>
<ForeName>Brett M</ForeName>
<Initials>BM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AAQX01000000</AccessionNumber>
<AccessionNumber>AAQY01000000</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>03</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020418">Algal Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020418" MajorTopicYN="N">Algal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="Y">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015321" MajorTopicYN="N">Gene Rearrangement</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016678" MajorTopicYN="N">Genome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011110" MajorTopicYN="N">Polymorphism, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026801" MajorTopicYN="N">Synteny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>4</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18344324</ArticleId>
<ArticleId IdType="pii">0709303105</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0709303105</ArticleId>
<ArticleId IdType="pmc">PMC2290801</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Plant Sci. 2001 Oct;6(10):479-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11590067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 1;450(7166):115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2002 Oct;10(10):462-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12377556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2002 Nov;3(11):827-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12415313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1703-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Apr;17(4):394-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15077672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2004;58:119-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15487932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1994 Jan 28;138(1-2):67-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8125319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 1997 Spring;4(1):45-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9109037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1997 Oct;13(5):555-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1998;14(1):48-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9520501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1998;14(9):755-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9918945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 10;306(5703):1930-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15591202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 10;306(5703):1934-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15591203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 10;306(5703):1957-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15591208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Apr;22(4):1107-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15689528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 24;102(21):7766-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15894622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jun;17(6):1839-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15894715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:309-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D379-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2006 Feb;163(3):256-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16403589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2006 May;2(5):e50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16733545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 May;155(1):431-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10790415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Aug;3(4):299-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006;7:201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16608522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 1;313(5791):1261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:41-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16448329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Dec;19(12):1302-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17153914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Dec;19(12):1311-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17153915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2007 Aug;10(4):326-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17698407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2349-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17675403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Dec;17(12):1244-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11751241</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Virginie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Govers, Francine" sort="Govers, Francine" uniqKey="Govers F" first="Francine" last="Govers">Francine Govers</name>
<name sortKey="Tripathy, Sucheta" sort="Tripathy, Sucheta" uniqKey="Tripathy S" first="Sucheta" last="Tripathy">Sucheta Tripathy</name>
<name sortKey="Tyler, Brett M" sort="Tyler, Brett M" uniqKey="Tyler B" first="Brett M" last="Tyler">Brett M. Tyler</name>
</noCountry>
<country name="États-Unis">
<region name="Virginie">
<name sortKey="Jiang, Rays H Y" sort="Jiang, Rays H Y" uniqKey="Jiang R" first="Rays H Y" last="Jiang">Rays H Y. Jiang</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraEffectorV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000286 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000286 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraEffectorV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18344324
   |texte=   RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18344324" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraEffectorV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Nov 17 23:19:50 2020. Site generation: Tue Nov 17 23:20:37 2020