Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle.

Identifieur interne : 001010 ( Main/Exploration ); précédent : 001009; suivant : 001011

Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle.

Auteurs : H. Wariishi ; L. Akileswaran ; M H Gold

Source :

RBID : pubmed:3167051

Descripteurs français

English descriptors

Abstract

Manganese peroxidase (MnP), an extracellular heme enzyme from the lignin-degrading fungus Phanerochaete chrysosporium, catalyzes the Mn(II)-dependent oxidation of a variety of phenols. Herein, we spectroscopically characterize the oxidized states of MnP compounds I, II, and III and clarify the role of Mn in the catalytic cycle of the enzyme. Addition of 1 equiv of H2O2 to the native ferric enzyme yields compound I, characterized by absorption maxima at 407, 558, 605, and 650 nm. Addition of 2 or 250 equiv of H2O2 to the native enzyme yields compound II or III, respectively, identified by absorption maxima at 420, 528, and 555 nm or at 417, 545, and 579 nm, respectively. These characteristics are very similar to those of horseradish peroxidase (HRP) and lignin peroxidase (LiP) compounds I, II, and III. Addition of 1 equiv of either Mn(II), ferrocyanide, or a variety of phenols to MnP compound I rapidly reduces it to MnP compound II. In contrast, only Mn(II) or ferrocyanide, added at a concentration of 1 equiv, reduces compound II. The Mn(III) produced by the enzymic oxidation of Mn(II) oxidizes the terminal phenolic substrates. This indicates that compounds I and II of MnP contain 2 and 1 oxidizing equiv, respectively, over the native ferric resting enzyme and that the catalytic cycle of the enzyme follows the path native enzyme----compound I----compound II----native enzyme. In addition, these results indicate that Mn(II) serves as an obligatory substrate for MnP compound II, allowing the enzyme to complete its catalytic cycle. Finally, the Mn(II)/Mn(III) redox couple enables the enzyme to rapidly oxidize the terminal phenolic substrates.

DOI: 10.1021/bi00414a061
PubMed: 3167051


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle.</title>
<author>
<name sortKey="Wariishi, H" sort="Wariishi, H" uniqKey="Wariishi H" first="H" last="Wariishi">H. Wariishi</name>
<affiliation>
<nlm:affiliation>Department of Chemical and Biological Sciences, Oregon Graduate Center, Beaverton 97006-1999.</nlm:affiliation>
<wicri:noCountry code="subField">Beaverton 97006-1999</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Akileswaran, L" sort="Akileswaran, L" uniqKey="Akileswaran L" first="L" last="Akileswaran">L. Akileswaran</name>
</author>
<author>
<name sortKey="Gold, M H" sort="Gold, M H" uniqKey="Gold M" first="M H" last="Gold">M H Gold</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1988">1988</date>
<idno type="RBID">pubmed:3167051</idno>
<idno type="pmid">3167051</idno>
<idno type="doi">10.1021/bi00414a061</idno>
<idno type="wicri:Area/Main/Corpus">001008</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001008</idno>
<idno type="wicri:Area/Main/Curation">001008</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001008</idno>
<idno type="wicri:Area/Main/Exploration">001008</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle.</title>
<author>
<name sortKey="Wariishi, H" sort="Wariishi, H" uniqKey="Wariishi H" first="H" last="Wariishi">H. Wariishi</name>
<affiliation>
<nlm:affiliation>Department of Chemical and Biological Sciences, Oregon Graduate Center, Beaverton 97006-1999.</nlm:affiliation>
<wicri:noCountry code="subField">Beaverton 97006-1999</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Akileswaran, L" sort="Akileswaran, L" uniqKey="Akileswaran L" first="L" last="Akileswaran">L. Akileswaran</name>
</author>
<author>
<name sortKey="Gold, M H" sort="Gold, M H" uniqKey="Gold M" first="M H" last="Gold">M H Gold</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<imprint>
<date when="1988" type="published">1988</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (enzymology)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Peroxidases (metabolism)</term>
<term>Spectrophotometry (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basidiomycota (enzymologie)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxidases (métabolisme)</term>
<term>Spectrophotométrie (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Oxidation-Reduction</term>
<term>Spectrophotometry</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Oxydoréduction</term>
<term>Spectrophotométrie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Manganese peroxidase (MnP), an extracellular heme enzyme from the lignin-degrading fungus Phanerochaete chrysosporium, catalyzes the Mn(II)-dependent oxidation of a variety of phenols. Herein, we spectroscopically characterize the oxidized states of MnP compounds I, II, and III and clarify the role of Mn in the catalytic cycle of the enzyme. Addition of 1 equiv of H2O2 to the native ferric enzyme yields compound I, characterized by absorption maxima at 407, 558, 605, and 650 nm. Addition of 2 or 250 equiv of H2O2 to the native enzyme yields compound II or III, respectively, identified by absorption maxima at 420, 528, and 555 nm or at 417, 545, and 579 nm, respectively. These characteristics are very similar to those of horseradish peroxidase (HRP) and lignin peroxidase (LiP) compounds I, II, and III. Addition of 1 equiv of either Mn(II), ferrocyanide, or a variety of phenols to MnP compound I rapidly reduces it to MnP compound II. In contrast, only Mn(II) or ferrocyanide, added at a concentration of 1 equiv, reduces compound II. The Mn(III) produced by the enzymic oxidation of Mn(II) oxidizes the terminal phenolic substrates. This indicates that compounds I and II of MnP contain 2 and 1 oxidizing equiv, respectively, over the native ferric resting enzyme and that the catalytic cycle of the enzyme follows the path native enzyme----compound I----compound II----native enzyme. In addition, these results indicate that Mn(II) serves as an obligatory substrate for MnP compound II, allowing the enzyme to complete its catalytic cycle. Finally, the Mn(II)/Mn(III) redox couple enables the enzyme to rapidly oxidize the terminal phenolic substrates.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">3167051</PMID>
<DateCompleted>
<Year>1988</Year>
<Month>11</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-2960</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>27</Volume>
<Issue>14</Issue>
<PubDate>
<Year>1988</Year>
<Month>Jul</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle.</ArticleTitle>
<Pagination>
<MedlinePgn>5365-70</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Manganese peroxidase (MnP), an extracellular heme enzyme from the lignin-degrading fungus Phanerochaete chrysosporium, catalyzes the Mn(II)-dependent oxidation of a variety of phenols. Herein, we spectroscopically characterize the oxidized states of MnP compounds I, II, and III and clarify the role of Mn in the catalytic cycle of the enzyme. Addition of 1 equiv of H2O2 to the native ferric enzyme yields compound I, characterized by absorption maxima at 407, 558, 605, and 650 nm. Addition of 2 or 250 equiv of H2O2 to the native enzyme yields compound II or III, respectively, identified by absorption maxima at 420, 528, and 555 nm or at 417, 545, and 579 nm, respectively. These characteristics are very similar to those of horseradish peroxidase (HRP) and lignin peroxidase (LiP) compounds I, II, and III. Addition of 1 equiv of either Mn(II), ferrocyanide, or a variety of phenols to MnP compound I rapidly reduces it to MnP compound II. In contrast, only Mn(II) or ferrocyanide, added at a concentration of 1 equiv, reduces compound II. The Mn(III) produced by the enzymic oxidation of Mn(II) oxidizes the terminal phenolic substrates. This indicates that compounds I and II of MnP contain 2 and 1 oxidizing equiv, respectively, over the native ferric resting enzyme and that the catalytic cycle of the enzyme follows the path native enzyme----compound I----compound II----native enzyme. In addition, these results indicate that Mn(II) serves as an obligatory substrate for MnP compound II, allowing the enzyme to complete its catalytic cycle. Finally, the Mn(II)/Mn(III) redox couple enables the enzyme to rapidly oxidize the terminal phenolic substrates.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wariishi</LastName>
<ForeName>H</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biological Sciences, Oregon Graduate Center, Beaverton 97006-1999.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Akileswaran</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gold</LastName>
<ForeName>M H</ForeName>
<Initials>MH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.13</RegistryNumber>
<NameOfSubstance UI="C051129">manganese peroxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013053" MajorTopicYN="N">Spectrophotometry</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1988</Year>
<Month>7</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1988</Year>
<Month>7</Month>
<Day>12</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1988</Year>
<Month>7</Month>
<Day>12</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">3167051</ArticleId>
<ArticleId IdType="doi">10.1021/bi00414a061</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Akileswaran, L" sort="Akileswaran, L" uniqKey="Akileswaran L" first="L" last="Akileswaran">L. Akileswaran</name>
<name sortKey="Gold, M H" sort="Gold, M H" uniqKey="Gold M" first="M H" last="Gold">M H Gold</name>
<name sortKey="Wariishi, H" sort="Wariishi, H" uniqKey="Wariishi H" first="H" last="Wariishi">H. Wariishi</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001010 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001010 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:3167051
   |texte=   Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:3167051" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020