Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metabolism of cyanide by Phanerochaete chrysosporium.

Identifieur interne : 000F10 ( Main/Exploration ); précédent : 000F09; suivant : 000F11

Metabolism of cyanide by Phanerochaete chrysosporium.

Auteurs : M M Shah ; T A Grover ; S D Aust

Source :

RBID : pubmed:1910320

Descripteurs français

English descriptors

Abstract

The oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) by lignin peroxidase H2 (LiP H2) from the white rot fungus Phanerochaete chrysosporium was strongly inhibited by sodium cyanide. The I50 was estimated to be about 2-3 microM. In contrast, sodium cyanide binds to the native enzyme with an apparent sodium cyanide dissociation constant Kd of about 10 microM. Inhibition of the veratryl alcohol oxidase activity of LiP H2 by cyanide was reversible. Ligninolytic cultures of P. chrysosporium mineralized cyanide at a rate that was proportional to the concentration of cyanide to 2 mM. The N-tert-butyl-alpha-phenylnitrone-cyanyl radical adduct was observed by ESR spin trapping upon incubation of LiP H2 with H2O2 and sodium cyanide. The identity of the spin adduct was confirmed using 13C-labeled cyanide. Six-day-old cultures of the fungus were more tolerant to sodium cyanide toxicity than spores. Toxicity measurements were based on the effect of sodium cyanide on respiration of the fungus as determined by the metabolism of [14C]glucose to [14C]CO2. We propose that this tolerance of the mature fungus was due to its ability to mineralize cyanide and that this fungus might be effective in treating environmental pollution sites contaminated with cyanide.

DOI: 10.1016/0003-9861(91)90604-h
PubMed: 1910320


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metabolism of cyanide by Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Shah, M M" sort="Shah, M M" uniqKey="Shah M" first="M M" last="Shah">M M Shah</name>
<affiliation>
<nlm:affiliation>Biotechnology Center, Utah State University, Logan 84322-4700.</nlm:affiliation>
<wicri:noCountry code="subField">Logan 84322-4700</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Grover, T A" sort="Grover, T A" uniqKey="Grover T" first="T A" last="Grover">T A Grover</name>
</author>
<author>
<name sortKey="Aust, S D" sort="Aust, S D" uniqKey="Aust S" first="S D" last="Aust">S D Aust</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1991">1991</date>
<idno type="RBID">pubmed:1910320</idno>
<idno type="pmid">1910320</idno>
<idno type="doi">10.1016/0003-9861(91)90604-h</idno>
<idno type="wicri:Area/Main/Corpus">000F02</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F02</idno>
<idno type="wicri:Area/Main/Curation">000F02</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F02</idno>
<idno type="wicri:Area/Main/Exploration">000F02</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Metabolism of cyanide by Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Shah, M M" sort="Shah, M M" uniqKey="Shah M" first="M M" last="Shah">M M Shah</name>
<affiliation>
<nlm:affiliation>Biotechnology Center, Utah State University, Logan 84322-4700.</nlm:affiliation>
<wicri:noCountry code="subField">Logan 84322-4700</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Grover, T A" sort="Grover, T A" uniqKey="Grover T" first="T A" last="Grover">T A Grover</name>
</author>
<author>
<name sortKey="Aust, S D" sort="Aust, S D" uniqKey="Aust S" first="S D" last="Aust">S D Aust</name>
</author>
</analytic>
<series>
<title level="j">Archives of biochemistry and biophysics</title>
<idno type="ISSN">0003-9861</idno>
<imprint>
<date when="1991" type="published">1991</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alcohol Oxidoreductases (antagonists & inhibitors)</term>
<term>Alcohol Oxidoreductases (metabolism)</term>
<term>Basidiomycota (drug effects)</term>
<term>Basidiomycota (metabolism)</term>
<term>Benzyl Alcohols (metabolism)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Glucose (metabolism)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Peroxidases (antagonists & inhibitors)</term>
<term>Peroxidases (metabolism)</term>
<term>Sodium Cyanide (metabolism)</term>
<term>Sodium Cyanide (toxicity)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alcohol oxidoreductases (antagonistes et inhibiteurs)</term>
<term>Alcohol oxidoreductases (métabolisme)</term>
<term>Alcools benzyliques (métabolisme)</term>
<term>Basidiomycota (effets des médicaments et des substances chimiques)</term>
<term>Basidiomycota (métabolisme)</term>
<term>Cyanure de sodium (métabolisme)</term>
<term>Cyanure de sodium (toxicité)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Glucose (métabolisme)</term>
<term>Peroxidases (antagonistes et inhibiteurs)</term>
<term>Peroxidases (métabolisme)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
<term>Benzyl Alcohols</term>
<term>Carbon Dioxide</term>
<term>Glucose</term>
<term>Hydrogen Peroxide</term>
<term>Peroxidases</term>
<term>Sodium Cyanide</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Alcohol oxidoreductases</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alcohol oxidoreductases</term>
<term>Alcools benzyliques</term>
<term>Basidiomycota</term>
<term>Cyanure de sodium</term>
<term>Dioxyde de carbone</term>
<term>Glucose</term>
<term>Peroxidases</term>
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Sodium Cyanide</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Cyanure de sodium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dépollution biologique de l'environnement</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) by lignin peroxidase H2 (LiP H2) from the white rot fungus Phanerochaete chrysosporium was strongly inhibited by sodium cyanide. The I50 was estimated to be about 2-3 microM. In contrast, sodium cyanide binds to the native enzyme with an apparent sodium cyanide dissociation constant Kd of about 10 microM. Inhibition of the veratryl alcohol oxidase activity of LiP H2 by cyanide was reversible. Ligninolytic cultures of P. chrysosporium mineralized cyanide at a rate that was proportional to the concentration of cyanide to 2 mM. The N-tert-butyl-alpha-phenylnitrone-cyanyl radical adduct was observed by ESR spin trapping upon incubation of LiP H2 with H2O2 and sodium cyanide. The identity of the spin adduct was confirmed using 13C-labeled cyanide. Six-day-old cultures of the fungus were more tolerant to sodium cyanide toxicity than spores. Toxicity measurements were based on the effect of sodium cyanide on respiration of the fungus as determined by the metabolism of [14C]glucose to [14C]CO2. We propose that this tolerance of the mature fungus was due to its ability to mineralize cyanide and that this fungus might be effective in treating environmental pollution sites contaminated with cyanide.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">1910320</PMID>
<DateCompleted>
<Year>1991</Year>
<Month>10</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0003-9861</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>290</Volume>
<Issue>1</Issue>
<PubDate>
<Year>1991</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Archives of biochemistry and biophysics</Title>
<ISOAbbreviation>Arch Biochem Biophys</ISOAbbreviation>
</Journal>
<ArticleTitle>Metabolism of cyanide by Phanerochaete chrysosporium.</ArticleTitle>
<Pagination>
<MedlinePgn>173-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) by lignin peroxidase H2 (LiP H2) from the white rot fungus Phanerochaete chrysosporium was strongly inhibited by sodium cyanide. The I50 was estimated to be about 2-3 microM. In contrast, sodium cyanide binds to the native enzyme with an apparent sodium cyanide dissociation constant Kd of about 10 microM. Inhibition of the veratryl alcohol oxidase activity of LiP H2 by cyanide was reversible. Ligninolytic cultures of P. chrysosporium mineralized cyanide at a rate that was proportional to the concentration of cyanide to 2 mM. The N-tert-butyl-alpha-phenylnitrone-cyanyl radical adduct was observed by ESR spin trapping upon incubation of LiP H2 with H2O2 and sodium cyanide. The identity of the spin adduct was confirmed using 13C-labeled cyanide. Six-day-old cultures of the fungus were more tolerant to sodium cyanide toxicity than spores. Toxicity measurements were based on the effect of sodium cyanide on respiration of the fungus as determined by the metabolism of [14C]glucose to [14C]CO2. We propose that this tolerance of the mature fungus was due to its ability to mineralize cyanide and that this fungus might be effective in treating environmental pollution sites contaminated with cyanide.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shah</LastName>
<ForeName>M M</ForeName>
<Initials>MM</Initials>
<AffiliationInfo>
<Affiliation>Biotechnology Center, Utah State University, Logan 84322-4700.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grover</LastName>
<ForeName>T A</ForeName>
<Initials>TA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Aust</LastName>
<ForeName>S D</ForeName>
<Initials>SD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>ES04922</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Arch Biochem Biophys</MedlineTA>
<NlmUniqueID>0372430</NlmUniqueID>
<ISSNLinking>0003-9861</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001592">Benzyl Alcohols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.-</RegistryNumber>
<NameOfSubstance UI="D000429">Alcohol Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.3.-</RegistryNumber>
<NameOfSubstance UI="C057990">veratryl alcohol oxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="C042858">lignin peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>MB4T4A711H</RegistryNumber>
<NameOfSubstance UI="C042197">veratryl alcohol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>O5DDB9Z95G</RegistryNumber>
<NameOfSubstance UI="D012966">Sodium Cyanide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000429" MajorTopicYN="N">Alcohol Oxidoreductases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001592" MajorTopicYN="N">Benzyl Alcohols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012966" MajorTopicYN="N">Sodium Cyanide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1991</Year>
<Month>10</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1991</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1991</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">1910320</ArticleId>
<ArticleId IdType="pii">0003-9861(91)90604-H</ArticleId>
<ArticleId IdType="doi">10.1016/0003-9861(91)90604-h</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Aust, S D" sort="Aust, S D" uniqKey="Aust S" first="S D" last="Aust">S D Aust</name>
<name sortKey="Grover, T A" sort="Grover, T A" uniqKey="Grover T" first="T A" last="Grover">T A Grover</name>
<name sortKey="Shah, M M" sort="Shah, M M" uniqKey="Shah M" first="M M" last="Shah">M M Shah</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F10 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F10 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:1910320
   |texte=   Metabolism of cyanide by Phanerochaete chrysosporium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:1910320" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020