Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Microbial delignification with white rot fungi improves forage digestibility.

Identifieur interne : 000E01 ( Main/Exploration ); précédent : 000E00; suivant : 000E02

Microbial delignification with white rot fungi improves forage digestibility.

Auteurs : D E Akin [États-Unis] ; A. Sethuraman ; W H Morrison ; S A Martin ; K E Eriksson

Source :

RBID : pubmed:16349123

Abstract

Three wild-type white rot fungi and two cellulase-less mutants developed from Phanerochaete chrysosporium K-3 (formerly Sporotrichum pulverulentum) were tested for their ability to delignify grass cell walls and improve biodegradation by rumen microorganisms. Fungal-treated and control stems of Bermuda grass were analyzed for their content of ester- and ether-linked aromatics by using alkali extraction and gas chromatography, for in vitro dry weight digestion and production of volatile fatty acids in in vitro fermentations with mixed ruminal microorganisms, for loss of lignin and other aromatics from specific cell wall types by using microspectrophotometry, and for structural changes before and after in vitro degradation by rumen microorganisms by using transmission electron microscopy. P. chrysosporium K-3 and Ceriporiopsis subvermispora FP 90031-sp produced the greatest losses in lignin and improved the biodegradation of Bermuda grass over that of untreated control substrate. However, C. subvermispora removed the most lignin and significantly improved biodegradation over all other treatments. Phellinus pini RAB-83-19 and cellulase-less mutants 3113 and 85118 developed from P. chrysosporium K-3 did not improve the biodegradation of Bermuda grass lignocellulose. Results indicated that C. subvermispora extensively removed ester-linked p-coumaric and ferulic acids and also removed the greatest amount of non-ester-linked aromatics from plant cell walls. Microscopic observations further indicated that C. subvermispora removed esters from parenchyma cell walls as well as esters and lignin from the more recalcitrant cell walls (i.e., sclerenchyma and vascular tissues). C. subvermispora improved in vitro digestion and volatile fatty acid production by ruminal microorganisms by about 80%, while dry matter loss due to fungi was about 20% greater than loss in untreated control stems. The chemical and structural studies used identified sites of specific fungal attack and suggested mechanisms whereby improvement occurred.

DOI: 10.1128/AEM.59.12.4274-4282.1993
PubMed: 16349123
PubMed Central: PMC195896


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Microbial delignification with white rot fungi improves forage digestibility.</title>
<author>
<name sortKey="Akin, D E" sort="Akin, D E" uniqKey="Akin D" first="D E" last="Akin">D E Akin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Russell Research Center, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 5677, Athens, Georgia 30613, and Department of Biochemistry and Department of Animal and Dairy Science, University of Georgia, Athens, Georgia 30602.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>Russell Research Center, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 5677, Athens, Georgia 30613, and Department of Biochemistry and Department of Animal and Dairy Science, University of Georgia, Athens</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sethuraman, A" sort="Sethuraman, A" uniqKey="Sethuraman A" first="A" last="Sethuraman">A. Sethuraman</name>
</author>
<author>
<name sortKey="Morrison, W H" sort="Morrison, W H" uniqKey="Morrison W" first="W H" last="Morrison">W H Morrison</name>
</author>
<author>
<name sortKey="Martin, S A" sort="Martin, S A" uniqKey="Martin S" first="S A" last="Martin">S A Martin</name>
</author>
<author>
<name sortKey="Eriksson, K E" sort="Eriksson, K E" uniqKey="Eriksson K" first="K E" last="Eriksson">K E Eriksson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1993">1993</date>
<idno type="RBID">pubmed:16349123</idno>
<idno type="pmid">16349123</idno>
<idno type="pmc">PMC195896</idno>
<idno type="doi">10.1128/AEM.59.12.4274-4282.1993</idno>
<idno type="wicri:Area/Main/Corpus">000D77</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D77</idno>
<idno type="wicri:Area/Main/Curation">000D77</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D77</idno>
<idno type="wicri:Area/Main/Exploration">000D77</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Microbial delignification with white rot fungi improves forage digestibility.</title>
<author>
<name sortKey="Akin, D E" sort="Akin, D E" uniqKey="Akin D" first="D E" last="Akin">D E Akin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Russell Research Center, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 5677, Athens, Georgia 30613, and Department of Biochemistry and Department of Animal and Dairy Science, University of Georgia, Athens, Georgia 30602.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>Russell Research Center, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 5677, Athens, Georgia 30613, and Department of Biochemistry and Department of Animal and Dairy Science, University of Georgia, Athens</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sethuraman, A" sort="Sethuraman, A" uniqKey="Sethuraman A" first="A" last="Sethuraman">A. Sethuraman</name>
</author>
<author>
<name sortKey="Morrison, W H" sort="Morrison, W H" uniqKey="Morrison W" first="W H" last="Morrison">W H Morrison</name>
</author>
<author>
<name sortKey="Martin, S A" sort="Martin, S A" uniqKey="Martin S" first="S A" last="Martin">S A Martin</name>
</author>
<author>
<name sortKey="Eriksson, K E" sort="Eriksson, K E" uniqKey="Eriksson K" first="K E" last="Eriksson">K E Eriksson</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="ISSN">0099-2240</idno>
<imprint>
<date when="1993" type="published">1993</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Three wild-type white rot fungi and two cellulase-less mutants developed from Phanerochaete chrysosporium K-3 (formerly Sporotrichum pulverulentum) were tested for their ability to delignify grass cell walls and improve biodegradation by rumen microorganisms. Fungal-treated and control stems of Bermuda grass were analyzed for their content of ester- and ether-linked aromatics by using alkali extraction and gas chromatography, for in vitro dry weight digestion and production of volatile fatty acids in in vitro fermentations with mixed ruminal microorganisms, for loss of lignin and other aromatics from specific cell wall types by using microspectrophotometry, and for structural changes before and after in vitro degradation by rumen microorganisms by using transmission electron microscopy. P. chrysosporium K-3 and Ceriporiopsis subvermispora FP 90031-sp produced the greatest losses in lignin and improved the biodegradation of Bermuda grass over that of untreated control substrate. However, C. subvermispora removed the most lignin and significantly improved biodegradation over all other treatments. Phellinus pini RAB-83-19 and cellulase-less mutants 3113 and 85118 developed from P. chrysosporium K-3 did not improve the biodegradation of Bermuda grass lignocellulose. Results indicated that C. subvermispora extensively removed ester-linked p-coumaric and ferulic acids and also removed the greatest amount of non-ester-linked aromatics from plant cell walls. Microscopic observations further indicated that C. subvermispora removed esters from parenchyma cell walls as well as esters and lignin from the more recalcitrant cell walls (i.e., sclerenchyma and vascular tissues). C. subvermispora improved in vitro digestion and volatile fatty acid production by ruminal microorganisms by about 80%, while dry matter loss due to fungi was about 20% greater than loss in untreated control stems. The chemical and structural studies used identified sites of specific fungal attack and suggested mechanisms whereby improvement occurred.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">16349123</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>06</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0099-2240</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>59</Volume>
<Issue>12</Issue>
<PubDate>
<Year>1993</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Microbial delignification with white rot fungi improves forage digestibility.</ArticleTitle>
<Pagination>
<MedlinePgn>4274-82</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Three wild-type white rot fungi and two cellulase-less mutants developed from Phanerochaete chrysosporium K-3 (formerly Sporotrichum pulverulentum) were tested for their ability to delignify grass cell walls and improve biodegradation by rumen microorganisms. Fungal-treated and control stems of Bermuda grass were analyzed for their content of ester- and ether-linked aromatics by using alkali extraction and gas chromatography, for in vitro dry weight digestion and production of volatile fatty acids in in vitro fermentations with mixed ruminal microorganisms, for loss of lignin and other aromatics from specific cell wall types by using microspectrophotometry, and for structural changes before and after in vitro degradation by rumen microorganisms by using transmission electron microscopy. P. chrysosporium K-3 and Ceriporiopsis subvermispora FP 90031-sp produced the greatest losses in lignin and improved the biodegradation of Bermuda grass over that of untreated control substrate. However, C. subvermispora removed the most lignin and significantly improved biodegradation over all other treatments. Phellinus pini RAB-83-19 and cellulase-less mutants 3113 and 85118 developed from P. chrysosporium K-3 did not improve the biodegradation of Bermuda grass lignocellulose. Results indicated that C. subvermispora extensively removed ester-linked p-coumaric and ferulic acids and also removed the greatest amount of non-ester-linked aromatics from plant cell walls. Microscopic observations further indicated that C. subvermispora removed esters from parenchyma cell walls as well as esters and lignin from the more recalcitrant cell walls (i.e., sclerenchyma and vascular tissues). C. subvermispora improved in vitro digestion and volatile fatty acid production by ruminal microorganisms by about 80%, while dry matter loss due to fungi was about 20% greater than loss in untreated control stems. The chemical and structural studies used identified sites of specific fungal attack and suggested mechanisms whereby improvement occurred.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Akin</LastName>
<ForeName>D E</ForeName>
<Initials>DE</Initials>
<AffiliationInfo>
<Affiliation>Russell Research Center, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 5677, Athens, Georgia 30613, and Department of Biochemistry and Department of Animal and Dairy Science, University of Georgia, Athens, Georgia 30602.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sethuraman</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Morrison</LastName>
<ForeName>W H</ForeName>
<Initials>WH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Martin</LastName>
<ForeName>S A</ForeName>
<Initials>SA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Eriksson</LastName>
<ForeName>K E</ForeName>
<Initials>KE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1993</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1993</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1993</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16349123</ArticleId>
<ArticleId IdType="pmc">PMC195896</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.59.12.4274-4282.1993</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Nov;58(11):3762-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1482195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1990 Oct;190(1):129-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2285139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Sci. 1990 Jul;68(7):2142-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2384404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol. 1966 Sep;14(5):794-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5970467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1993 Feb;59(2):644-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8434931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1984 Sep;48(3):647-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16346631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1986 Aug;52(2):239-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Oct;58(10):3217-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1993 Jun;59(6):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol. 1974 Jun;27(6):1149-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Sci. 1992 Jun;70(6):1928-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1321801</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Géorgie (États-Unis)</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Eriksson, K E" sort="Eriksson, K E" uniqKey="Eriksson K" first="K E" last="Eriksson">K E Eriksson</name>
<name sortKey="Martin, S A" sort="Martin, S A" uniqKey="Martin S" first="S A" last="Martin">S A Martin</name>
<name sortKey="Morrison, W H" sort="Morrison, W H" uniqKey="Morrison W" first="W H" last="Morrison">W H Morrison</name>
<name sortKey="Sethuraman, A" sort="Sethuraman, A" uniqKey="Sethuraman A" first="A" last="Sethuraman">A. Sethuraman</name>
</noCountry>
<country name="États-Unis">
<region name="Géorgie (États-Unis)">
<name sortKey="Akin, D E" sort="Akin, D E" uniqKey="Akin D" first="D E" last="Akin">D E Akin</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E01 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E01 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16349123
   |texte=   Microbial delignification with white rot fungi improves forage digestibility.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16349123" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020