Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Crystal structure of the fungal peroxidase from Arthromyces ramosus at 1.9 A resolution. Structural comparisons with the lignin and cytochrome c peroxidases.

Identifieur interne : 000D61 ( Main/Exploration ); précédent : 000D60; suivant : 000D62

Crystal structure of the fungal peroxidase from Arthromyces ramosus at 1.9 A resolution. Structural comparisons with the lignin and cytochrome c peroxidases.

Auteurs : N. Kunishima [Japon] ; K. Fukuyama ; H. Matsubara ; H. Hatanaka ; Y. Shibano ; T. Amachi

Source :

RBID : pubmed:8289254

Descripteurs français

English descriptors

Abstract

The crystal structure of the peroxidase (donor: H2O2 oxidoreductase, EC 1.11.1.7) from the hyphomycete Arthromyces ramosus (ARP) has been determined by the multiple isomorphous replacement method and refined by the simulated annealing method to a crystallographic R-factor of 17.4% for the 19,191 reflections with F > 2 sigma F between 7.0 and 1.9 A resolution. The model includes residues 9 to 344, the heme group, two N-acetylglucosamine residues, two calcium ions and 246 water molecules. The root-mean-square deviation of bond lengths from the ideal values is 0.02 A. The mean coordinate error is estimated as 0.2 A. The electron density of the glycine-rich region of the amino-terminal eight residues was invisible. ARP has ten major and two short alpha-helices and a few short beta-strands. The overall tertiary structure of ARP is similar to that of yeast cytochrome c peroxidase (CCP) and is particularly similar to that of the lignin peroxidase (LiP) from Phanerochaete chrysosporium. Relative to CCP, ARP and LiP each have an extension of approximately 40 residues at the carboxy terminus. All eight cysteine residues in ARP form disulfide bonds (C12:C24, C23:C293, C43:C129 and C257:C322). Two calcium sites are inaccessible to solvent. The four disulfide bonds and two calcium sites, which are lacking in CCP, are conserved in ARP and LiP. The bond from Asn304C to Ala305N in ARP is the site sensitive to proteases. An Asx turn present in the Asn303 to Ala305 segment appears to orient the side-chain of Asn304 to outward from the molecule, rendering it easily trappable by pockets of proteases. The proximal heme ligand is His184 in helix F (distance of N epsilon 2 ... Fe, 2.10 A), and one of several water molecules in the distal pocket of the heme bridges the iron atom and the N epsilon 2 of His56. The orientation of the imidazole ring of the distal histidine residue relative to the heme group in ARP differs significantly from that in LiP. The access channel to the distal side of the heme of ARP is markedly wider along the heme plane than that of LiP. Many of the amino acid residues that comprise the entrance of this channel differ for ARP and LiP. This may account for the differences in substrate specificity.

DOI: 10.1016/s0022-2836(05)80037-3
PubMed: 8289254


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Crystal structure of the fungal peroxidase from Arthromyces ramosus at 1.9 A resolution. Structural comparisons with the lignin and cytochrome c peroxidases.</title>
<author>
<name sortKey="Kunishima, N" sort="Kunishima, N" uniqKey="Kunishima N" first="N" last="Kunishima">N. Kunishima</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Faculty of Science, Osaka University, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biology, Faculty of Science, Osaka University</wicri:regionArea>
<wicri:noRegion>Osaka University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fukuyama, K" sort="Fukuyama, K" uniqKey="Fukuyama K" first="K" last="Fukuyama">K. Fukuyama</name>
</author>
<author>
<name sortKey="Matsubara, H" sort="Matsubara, H" uniqKey="Matsubara H" first="H" last="Matsubara">H. Matsubara</name>
</author>
<author>
<name sortKey="Hatanaka, H" sort="Hatanaka, H" uniqKey="Hatanaka H" first="H" last="Hatanaka">H. Hatanaka</name>
</author>
<author>
<name sortKey="Shibano, Y" sort="Shibano, Y" uniqKey="Shibano Y" first="Y" last="Shibano">Y. Shibano</name>
</author>
<author>
<name sortKey="Amachi, T" sort="Amachi, T" uniqKey="Amachi T" first="T" last="Amachi">T. Amachi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1994">1994</date>
<idno type="RBID">pubmed:8289254</idno>
<idno type="pmid">8289254</idno>
<idno type="doi">10.1016/s0022-2836(05)80037-3</idno>
<idno type="wicri:Area/Main/Corpus">000D71</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D71</idno>
<idno type="wicri:Area/Main/Curation">000D71</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D71</idno>
<idno type="wicri:Area/Main/Exploration">000D71</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Crystal structure of the fungal peroxidase from Arthromyces ramosus at 1.9 A resolution. Structural comparisons with the lignin and cytochrome c peroxidases.</title>
<author>
<name sortKey="Kunishima, N" sort="Kunishima, N" uniqKey="Kunishima N" first="N" last="Kunishima">N. Kunishima</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Faculty of Science, Osaka University, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biology, Faculty of Science, Osaka University</wicri:regionArea>
<wicri:noRegion>Osaka University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fukuyama, K" sort="Fukuyama, K" uniqKey="Fukuyama K" first="K" last="Fukuyama">K. Fukuyama</name>
</author>
<author>
<name sortKey="Matsubara, H" sort="Matsubara, H" uniqKey="Matsubara H" first="H" last="Matsubara">H. Matsubara</name>
</author>
<author>
<name sortKey="Hatanaka, H" sort="Hatanaka, H" uniqKey="Hatanaka H" first="H" last="Hatanaka">H. Hatanaka</name>
</author>
<author>
<name sortKey="Shibano, Y" sort="Shibano, Y" uniqKey="Shibano Y" first="Y" last="Shibano">Y. Shibano</name>
</author>
<author>
<name sortKey="Amachi, T" sort="Amachi, T" uniqKey="Amachi T" first="T" last="Amachi">T. Amachi</name>
</author>
</analytic>
<series>
<title level="j">Journal of molecular biology</title>
<idno type="ISSN">0022-2836</idno>
<imprint>
<date when="1994" type="published">1994</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetylglucosamine (analysis)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Binding Sites (MeSH)</term>
<term>Computer Graphics (MeSH)</term>
<term>Crystallography, X-Ray (methods)</term>
<term>Cytochrome-c Peroxidase (chemistry)</term>
<term>Heme (metabolism)</term>
<term>Mitosporic Fungi (enzymology)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Peroxidases (chemistry)</term>
<term>Peroxidases (metabolism)</term>
<term>Protein Conformation (MeSH)</term>
<term>Protein Structure, Secondary (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acétyl-glucosamine (analyse)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Cristallographie aux rayons X (méthodes)</term>
<term>Cytochrome-c peroxidase (composition chimique)</term>
<term>Deuteromycota (enzymologie)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Hème (métabolisme)</term>
<term>Infographie (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Peroxidases (composition chimique)</term>
<term>Peroxidases (métabolisme)</term>
<term>Sites de fixation (MeSH)</term>
<term>Structure secondaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Acetylglucosamine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cytochrome-c Peroxidase</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Heme</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Acétyl-glucosamine</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cytochrome-c peroxidase</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Deuteromycota</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Mitosporic Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Crystallography, X-Ray</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Hème</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Cristallographie aux rayons X</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Computer Graphics</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Protein Conformation</term>
<term>Protein Structure, Secondary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Infographie</term>
<term>Modèles moléculaires</term>
<term>Sites de fixation</term>
<term>Structure secondaire des protéines</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The crystal structure of the peroxidase (donor: H2O2 oxidoreductase, EC 1.11.1.7) from the hyphomycete Arthromyces ramosus (ARP) has been determined by the multiple isomorphous replacement method and refined by the simulated annealing method to a crystallographic R-factor of 17.4% for the 19,191 reflections with F > 2 sigma F between 7.0 and 1.9 A resolution. The model includes residues 9 to 344, the heme group, two N-acetylglucosamine residues, two calcium ions and 246 water molecules. The root-mean-square deviation of bond lengths from the ideal values is 0.02 A. The mean coordinate error is estimated as 0.2 A. The electron density of the glycine-rich region of the amino-terminal eight residues was invisible. ARP has ten major and two short alpha-helices and a few short beta-strands. The overall tertiary structure of ARP is similar to that of yeast cytochrome c peroxidase (CCP) and is particularly similar to that of the lignin peroxidase (LiP) from Phanerochaete chrysosporium. Relative to CCP, ARP and LiP each have an extension of approximately 40 residues at the carboxy terminus. All eight cysteine residues in ARP form disulfide bonds (C12:C24, C23:C293, C43:C129 and C257:C322). Two calcium sites are inaccessible to solvent. The four disulfide bonds and two calcium sites, which are lacking in CCP, are conserved in ARP and LiP. The bond from Asn304C to Ala305N in ARP is the site sensitive to proteases. An Asx turn present in the Asn303 to Ala305 segment appears to orient the side-chain of Asn304 to outward from the molecule, rendering it easily trappable by pockets of proteases. The proximal heme ligand is His184 in helix F (distance of N epsilon 2 ... Fe, 2.10 A), and one of several water molecules in the distal pocket of the heme bridges the iron atom and the N epsilon 2 of His56. The orientation of the imidazole ring of the distal histidine residue relative to the heme group in ARP differs significantly from that in LiP. The access channel to the distal side of the heme of ARP is markedly wider along the heme plane than that of LiP. Many of the amino acid residues that comprise the entrance of this channel differ for ARP and LiP. This may account for the differences in substrate specificity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">8289254</PMID>
<DateCompleted>
<Year>1994</Year>
<Month>02</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>07</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-2836</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>235</Volume>
<Issue>1</Issue>
<PubDate>
<Year>1994</Year>
<Month>Jan</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Journal of molecular biology</Title>
<ISOAbbreviation>J Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Crystal structure of the fungal peroxidase from Arthromyces ramosus at 1.9 A resolution. Structural comparisons with the lignin and cytochrome c peroxidases.</ArticleTitle>
<Pagination>
<MedlinePgn>331-44</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The crystal structure of the peroxidase (donor: H2O2 oxidoreductase, EC 1.11.1.7) from the hyphomycete Arthromyces ramosus (ARP) has been determined by the multiple isomorphous replacement method and refined by the simulated annealing method to a crystallographic R-factor of 17.4% for the 19,191 reflections with F > 2 sigma F between 7.0 and 1.9 A resolution. The model includes residues 9 to 344, the heme group, two N-acetylglucosamine residues, two calcium ions and 246 water molecules. The root-mean-square deviation of bond lengths from the ideal values is 0.02 A. The mean coordinate error is estimated as 0.2 A. The electron density of the glycine-rich region of the amino-terminal eight residues was invisible. ARP has ten major and two short alpha-helices and a few short beta-strands. The overall tertiary structure of ARP is similar to that of yeast cytochrome c peroxidase (CCP) and is particularly similar to that of the lignin peroxidase (LiP) from Phanerochaete chrysosporium. Relative to CCP, ARP and LiP each have an extension of approximately 40 residues at the carboxy terminus. All eight cysteine residues in ARP form disulfide bonds (C12:C24, C23:C293, C43:C129 and C257:C322). Two calcium sites are inaccessible to solvent. The four disulfide bonds and two calcium sites, which are lacking in CCP, are conserved in ARP and LiP. The bond from Asn304C to Ala305N in ARP is the site sensitive to proteases. An Asx turn present in the Asn303 to Ala305 segment appears to orient the side-chain of Asn304 to outward from the molecule, rendering it easily trappable by pockets of proteases. The proximal heme ligand is His184 in helix F (distance of N epsilon 2 ... Fe, 2.10 A), and one of several water molecules in the distal pocket of the heme bridges the iron atom and the N epsilon 2 of His56. The orientation of the imidazole ring of the distal histidine residue relative to the heme group in ARP differs significantly from that in LiP. The access channel to the distal side of the heme of ARP is markedly wider along the heme plane than that of LiP. Many of the amino acid residues that comprise the entrance of this channel differ for ARP and LiP. This may account for the differences in substrate specificity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kunishima</LastName>
<ForeName>N</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Faculty of Science, Osaka University, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fukuyama</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Matsubara</LastName>
<ForeName>H</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hatanaka</LastName>
<ForeName>H</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shibano</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Amachi</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Mol Biol</MedlineTA>
<NlmUniqueID>2985088R</NlmUniqueID>
<ISSNLinking>0022-2836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>42VZT0U6YR</RegistryNumber>
<NameOfSubstance UI="D006418">Heme</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="C042858">lignin peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.5</RegistryNumber>
<NameOfSubstance UI="D003578">Cytochrome-c Peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>V956696549</RegistryNumber>
<NameOfSubstance UI="D000117">Acetylglucosamine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000117" MajorTopicYN="N">Acetylglucosamine</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003196" MajorTopicYN="N">Computer Graphics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003578" MajorTopicYN="N">Cytochrome-c Peroxidase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006418" MajorTopicYN="N">Heme</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003904" MajorTopicYN="N">Mitosporic Fungi</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="Y">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="Y">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1994</Year>
<Month>1</Month>
<Day>7</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1994</Year>
<Month>1</Month>
<Day>7</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1994</Year>
<Month>1</Month>
<Day>7</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">8289254</ArticleId>
<ArticleId IdType="pii">S0022-2836(05)80037-3</ArticleId>
<ArticleId IdType="doi">10.1016/s0022-2836(05)80037-3</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Amachi, T" sort="Amachi, T" uniqKey="Amachi T" first="T" last="Amachi">T. Amachi</name>
<name sortKey="Fukuyama, K" sort="Fukuyama, K" uniqKey="Fukuyama K" first="K" last="Fukuyama">K. Fukuyama</name>
<name sortKey="Hatanaka, H" sort="Hatanaka, H" uniqKey="Hatanaka H" first="H" last="Hatanaka">H. Hatanaka</name>
<name sortKey="Matsubara, H" sort="Matsubara, H" uniqKey="Matsubara H" first="H" last="Matsubara">H. Matsubara</name>
<name sortKey="Shibano, Y" sort="Shibano, Y" uniqKey="Shibano Y" first="Y" last="Shibano">Y. Shibano</name>
</noCountry>
<country name="Japon">
<noRegion>
<name sortKey="Kunishima, N" sort="Kunishima, N" uniqKey="Kunishima N" first="N" last="Kunishima">N. Kunishima</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D61 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D61 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:8289254
   |texte=   Crystal structure of the fungal peroxidase from Arthromyces ramosus at 1.9 A resolution. Structural comparisons with the lignin and cytochrome c peroxidases.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:8289254" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020