Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fungal degradation of recalcitrant nonphenolic lignin structures without lignin peroxidase.

Identifieur interne : 000D52 ( Main/Exploration ); précédent : 000D51; suivant : 000D53

Fungal degradation of recalcitrant nonphenolic lignin structures without lignin peroxidase.

Auteurs : E. Srebotnik [États-Unis] ; K A Jensen ; K E Hammel

Source :

RBID : pubmed:11607502

Abstract

Lignin peroxidases (LiPs) are likely catalysts of ligninolysis in many white-rot fungi, because they have the unusual ability to depolymerize the major, recalcitrant, non-phenolic structures of lignin. Some white-rot fungi have been reported to lack LiP when grown on defined medium, but it is not clear whether they exhibit full ligninolytic competence under these conditions. To address this problem, we compared the abilities of a known LiP producer, Phanerochaete chrysosporium, with those of a reported nonproducer, Ceriporiopsis subvermispora, to degrade a synthetic lignin with normal phenolic content, a lignin with all phenolic units blocked, and a dimer, 1-(4-ethoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol, that represents the major nonphenolic structure in lignin. P. chrysosporium mineralized all three models rapidly in defined medium, but C. subvermispora showed appreciable activity only toward the more labile phenolic compound under these conditions. However, in wood, its natural environment, C. subvermispora mineralized all of the models as rapidly as P. chrysosporium did. Defined media therefore fail to elicit a key component of the ligninolytic system in C. subvermispora. A double-labeling experiment with the dimeric model showed that a LiP-dependent pathway was responsible for at least half of dimer mineralization in wood by P. chrysosporium but was responsible for no more than 6-7% of mineralization by C. subvermispora in wood. Therefore, C. subvermispora has mechanisms for degradation of nonphenolic lignin that are as efficient as those in P. chrysosporium but that do not depend on LiP.

DOI: 10.1073/pnas.91.26.12794
PubMed: 11607502
PubMed Central: PMC45526


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fungal degradation of recalcitrant nonphenolic lignin structures without lignin peroxidase.</title>
<author>
<name sortKey="Srebotnik, E" sort="Srebotnik, E" uniqKey="Srebotnik E" first="E" last="Srebotnik">E. Srebotnik</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute for Microbial and Biochemical Technology, Forest Products Laboratory, U.S. Department of Agriculture, Madison, WI 53705, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Microbial and Biochemical Technology, Forest Products Laboratory, U.S. Department of Agriculture, Madison, WI 53705</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jensen, K A" sort="Jensen, K A" uniqKey="Jensen K" first="K A" last="Jensen">K A Jensen</name>
</author>
<author>
<name sortKey="Hammel, K E" sort="Hammel, K E" uniqKey="Hammel K" first="K E" last="Hammel">K E Hammel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1994">1994</date>
<idno type="RBID">pubmed:11607502</idno>
<idno type="pmid">11607502</idno>
<idno type="pmc">PMC45526</idno>
<idno type="doi">10.1073/pnas.91.26.12794</idno>
<idno type="wicri:Area/Main/Corpus">000D22</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D22</idno>
<idno type="wicri:Area/Main/Curation">000D22</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D22</idno>
<idno type="wicri:Area/Main/Exploration">000D22</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Fungal degradation of recalcitrant nonphenolic lignin structures without lignin peroxidase.</title>
<author>
<name sortKey="Srebotnik, E" sort="Srebotnik, E" uniqKey="Srebotnik E" first="E" last="Srebotnik">E. Srebotnik</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute for Microbial and Biochemical Technology, Forest Products Laboratory, U.S. Department of Agriculture, Madison, WI 53705, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Microbial and Biochemical Technology, Forest Products Laboratory, U.S. Department of Agriculture, Madison, WI 53705</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jensen, K A" sort="Jensen, K A" uniqKey="Jensen K" first="K A" last="Jensen">K A Jensen</name>
</author>
<author>
<name sortKey="Hammel, K E" sort="Hammel, K E" uniqKey="Hammel K" first="K E" last="Hammel">K E Hammel</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="1994" type="published">1994</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lignin peroxidases (LiPs) are likely catalysts of ligninolysis in many white-rot fungi, because they have the unusual ability to depolymerize the major, recalcitrant, non-phenolic structures of lignin. Some white-rot fungi have been reported to lack LiP when grown on defined medium, but it is not clear whether they exhibit full ligninolytic competence under these conditions. To address this problem, we compared the abilities of a known LiP producer, Phanerochaete chrysosporium, with those of a reported nonproducer, Ceriporiopsis subvermispora, to degrade a synthetic lignin with normal phenolic content, a lignin with all phenolic units blocked, and a dimer, 1-(4-ethoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol, that represents the major nonphenolic structure in lignin. P. chrysosporium mineralized all three models rapidly in defined medium, but C. subvermispora showed appreciable activity only toward the more labile phenolic compound under these conditions. However, in wood, its natural environment, C. subvermispora mineralized all of the models as rapidly as P. chrysosporium did. Defined media therefore fail to elicit a key component of the ligninolytic system in C. subvermispora. A double-labeling experiment with the dimeric model showed that a LiP-dependent pathway was responsible for at least half of dimer mineralization in wood by P. chrysosporium but was responsible for no more than 6-7% of mineralization by C. subvermispora in wood. Therefore, C. subvermispora has mechanisms for degradation of nonphenolic lignin that are as efficient as those in P. chrysosporium but that do not depend on LiP.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">11607502</PMID>
<DateCompleted>
<Year>2001</Year>
<Month>12</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>91</Volume>
<Issue>26</Issue>
<PubDate>
<Year>1994</Year>
<Month>Dec</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Fungal degradation of recalcitrant nonphenolic lignin structures without lignin peroxidase.</ArticleTitle>
<Pagination>
<MedlinePgn>12794-7</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Lignin peroxidases (LiPs) are likely catalysts of ligninolysis in many white-rot fungi, because they have the unusual ability to depolymerize the major, recalcitrant, non-phenolic structures of lignin. Some white-rot fungi have been reported to lack LiP when grown on defined medium, but it is not clear whether they exhibit full ligninolytic competence under these conditions. To address this problem, we compared the abilities of a known LiP producer, Phanerochaete chrysosporium, with those of a reported nonproducer, Ceriporiopsis subvermispora, to degrade a synthetic lignin with normal phenolic content, a lignin with all phenolic units blocked, and a dimer, 1-(4-ethoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol, that represents the major nonphenolic structure in lignin. P. chrysosporium mineralized all three models rapidly in defined medium, but C. subvermispora showed appreciable activity only toward the more labile phenolic compound under these conditions. However, in wood, its natural environment, C. subvermispora mineralized all of the models as rapidly as P. chrysosporium did. Defined media therefore fail to elicit a key component of the ligninolytic system in C. subvermispora. A double-labeling experiment with the dimeric model showed that a LiP-dependent pathway was responsible for at least half of dimer mineralization in wood by P. chrysosporium but was responsible for no more than 6-7% of mineralization by C. subvermispora in wood. Therefore, C. subvermispora has mechanisms for degradation of nonphenolic lignin that are as efficient as those in P. chrysosporium but that do not depend on LiP.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Srebotnik</LastName>
<ForeName>E</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Institute for Microbial and Biochemical Technology, Forest Products Laboratory, U.S. Department of Agriculture, Madison, WI 53705, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jensen</LastName>
<ForeName>K A</ForeName>
<Initials>KA</Initials>
<Suffix>Jr</Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Hammel</LastName>
<ForeName>K E</ForeName>
<Initials>KE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1994</Year>
<Month>12</Month>
<Day>20</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1994</Year>
<Month>12</Month>
<Day>20</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11607502</ArticleId>
<ArticleId IdType="pmc">PMC45526</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.91.26.12794</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 1993 Jun;59(6):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Apr;60(4):1383-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Feb;60(2):709-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1989 Apr;55(4):871-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1989 Jun;55(6):1457-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1980 Mar;39(3):535-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16345527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Aug 12;221(4611):661-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17787736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Jun 15;268(17):12274-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8509364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1993 Sep;57(3):605-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8246842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1993 Jan 4;315(2):119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8417967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1993 Dec;59(12):4017-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8285705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Jun 2;31(21):4986-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1599925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1991 Apr 15;176(1):269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2018522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 Aug;57(8):2240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1768094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1988 Apr;262(1):99-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3355177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Aug 25;264(24):14185-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2760063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 Jul 15;260(14):8348-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2989288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Jun;83(11):3708-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3012530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 Mar 10;260(5):2609-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2982828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1987;41:465-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3318677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1987 Apr 2-8;326(6112):520-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3561490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1983 Aug 12;114(3):1077-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6615503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1975 Jul;72(7):2515-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1058470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):750-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607355</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Wisconsin</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Hammel, K E" sort="Hammel, K E" uniqKey="Hammel K" first="K E" last="Hammel">K E Hammel</name>
<name sortKey="Jensen, K A" sort="Jensen, K A" uniqKey="Jensen K" first="K A" last="Jensen">K A Jensen</name>
</noCountry>
<country name="États-Unis">
<region name="Wisconsin">
<name sortKey="Srebotnik, E" sort="Srebotnik, E" uniqKey="Srebotnik E" first="E" last="Srebotnik">E. Srebotnik</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D52 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D52 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11607502
   |texte=   Fungal degradation of recalcitrant nonphenolic lignin structures without lignin peroxidase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11607502" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020