Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The role of oxalate in lignin peroxidase-catalyzed reduction: protection from compound III accumulation.

Identifieur interne : 000D22 ( Main/Exploration ); précédent : 000D21; suivant : 000D23

The role of oxalate in lignin peroxidase-catalyzed reduction: protection from compound III accumulation.

Auteurs : D C Goodwin ; D P Barr ; S D Aust ; T A Grover

Source :

RBID : pubmed:7986067

Descripteurs français

English descriptors

Abstract

Reduction may be an important step in the degradation of some highly oxidized environmental pollutants by Phanerochaete chrysosporium. Lignin peroxidases (LiP) from P. chrysosporium are able to catalyze reductive reactions using veratryl alcohol (VA) as a mediator and either oxalate or EDTA as electron donors. Reduction of oxygen to superoxide, monitored by oxygen consumption, was used as a measure of the reductive activity of LiP. In the presence of EDTA, the rate of O2 reduction catalyzed by LiP decreased with time and increasing concentrations of H2O2. When oxalate replaced EDTA, LiP-catalyzed O2 reduction did not decrease with time, and increasing concentrations of H2O2 increased the duration and extent of O2 reduction. LiP was converted to the compound III state in the presence of EDTA, H2O2, and veratryl alcohol. When oxalate replaced EDTA, compound II was observed. The importance of the veratryl alcohol cation radical (VA.+) in the conversion of LiP compound III to active enzyme has been previously examined (D.P. Barr and S.D. Aust, 1994, Arch. Biochem. Biophys. 311, 378-382). We propose that rapid reduction of VA.+ by EDTA results in accumulation of LiP compound III and the loss of activity resulting in a decrease in LiP-catalyzed reduction reactions. Oxalate is less effective in reducing the VA.+, therefore, some VA.+ remains to convert compound III to active enzyme and maintain LiP-catalyzed reduction reactions. Thus oxalate, a normal secondary metabolite of P. chrysosporium, is a suitable candidate for mediating reduction reactions by LiP in vivo.

DOI: 10.1006/abbi.1994.1499
PubMed: 7986067


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The role of oxalate in lignin peroxidase-catalyzed reduction: protection from compound III accumulation.</title>
<author>
<name sortKey="Goodwin, D C" sort="Goodwin, D C" uniqKey="Goodwin D" first="D C" last="Goodwin">D C Goodwin</name>
<affiliation>
<nlm:affiliation>Biotechnology Center, Utah State University, Logan 84322-4700.</nlm:affiliation>
<wicri:noCountry code="subField">Logan 84322-4700</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Barr, D P" sort="Barr, D P" uniqKey="Barr D" first="D P" last="Barr">D P Barr</name>
</author>
<author>
<name sortKey="Aust, S D" sort="Aust, S D" uniqKey="Aust S" first="S D" last="Aust">S D Aust</name>
</author>
<author>
<name sortKey="Grover, T A" sort="Grover, T A" uniqKey="Grover T" first="T A" last="Grover">T A Grover</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1994">1994</date>
<idno type="RBID">pubmed:7986067</idno>
<idno type="pmid">7986067</idno>
<idno type="doi">10.1006/abbi.1994.1499</idno>
<idno type="wicri:Area/Main/Corpus">000D24</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D24</idno>
<idno type="wicri:Area/Main/Curation">000D24</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D24</idno>
<idno type="wicri:Area/Main/Exploration">000D24</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The role of oxalate in lignin peroxidase-catalyzed reduction: protection from compound III accumulation.</title>
<author>
<name sortKey="Goodwin, D C" sort="Goodwin, D C" uniqKey="Goodwin D" first="D C" last="Goodwin">D C Goodwin</name>
<affiliation>
<nlm:affiliation>Biotechnology Center, Utah State University, Logan 84322-4700.</nlm:affiliation>
<wicri:noCountry code="subField">Logan 84322-4700</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Barr, D P" sort="Barr, D P" uniqKey="Barr D" first="D P" last="Barr">D P Barr</name>
</author>
<author>
<name sortKey="Aust, S D" sort="Aust, S D" uniqKey="Aust S" first="S D" last="Aust">S D Aust</name>
</author>
<author>
<name sortKey="Grover, T A" sort="Grover, T A" uniqKey="Grover T" first="T A" last="Grover">T A Grover</name>
</author>
</analytic>
<series>
<title level="j">Archives of biochemistry and biophysics</title>
<idno type="ISSN">0003-9861</idno>
<imprint>
<date when="1994" type="published">1994</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Edetic Acid (metabolism)</term>
<term>Fungi (enzymology)</term>
<term>In Vitro Techniques (MeSH)</term>
<term>Oxalates (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxygen Consumption (MeSH)</term>
<term>Peroxidases (metabolism)</term>
<term>Spectrum Analysis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide édétique (métabolisme)</term>
<term>Analyse spectrale (MeSH)</term>
<term>Champignons (enzymologie)</term>
<term>Consommation d'oxygène (MeSH)</term>
<term>Oxalates (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxidases (métabolisme)</term>
<term>Techniques in vitro (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Edetic Acid</term>
<term>Oxalates</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Champignons</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide édétique</term>
<term>Oxalates</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>In Vitro Techniques</term>
<term>Oxidation-Reduction</term>
<term>Oxygen Consumption</term>
<term>Spectrum Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse spectrale</term>
<term>Consommation d'oxygène</term>
<term>Oxydoréduction</term>
<term>Techniques in vitro</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Reduction may be an important step in the degradation of some highly oxidized environmental pollutants by Phanerochaete chrysosporium. Lignin peroxidases (LiP) from P. chrysosporium are able to catalyze reductive reactions using veratryl alcohol (VA) as a mediator and either oxalate or EDTA as electron donors. Reduction of oxygen to superoxide, monitored by oxygen consumption, was used as a measure of the reductive activity of LiP. In the presence of EDTA, the rate of O2 reduction catalyzed by LiP decreased with time and increasing concentrations of H2O2. When oxalate replaced EDTA, LiP-catalyzed O2 reduction did not decrease with time, and increasing concentrations of H2O2 increased the duration and extent of O2 reduction. LiP was converted to the compound III state in the presence of EDTA, H2O2, and veratryl alcohol. When oxalate replaced EDTA, compound II was observed. The importance of the veratryl alcohol cation radical (VA.+) in the conversion of LiP compound III to active enzyme has been previously examined (D.P. Barr and S.D. Aust, 1994, Arch. Biochem. Biophys. 311, 378-382). We propose that rapid reduction of VA.+ by EDTA results in accumulation of LiP compound III and the loss of activity resulting in a decrease in LiP-catalyzed reduction reactions. Oxalate is less effective in reducing the VA.+, therefore, some VA.+ remains to convert compound III to active enzyme and maintain LiP-catalyzed reduction reactions. Thus oxalate, a normal secondary metabolite of P. chrysosporium, is a suitable candidate for mediating reduction reactions by LiP in vivo.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">7986067</PMID>
<DateCompleted>
<Year>1995</Year>
<Month>01</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0003-9861</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>315</Volume>
<Issue>2</Issue>
<PubDate>
<Year>1994</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Archives of biochemistry and biophysics</Title>
<ISOAbbreviation>Arch Biochem Biophys</ISOAbbreviation>
</Journal>
<ArticleTitle>The role of oxalate in lignin peroxidase-catalyzed reduction: protection from compound III accumulation.</ArticleTitle>
<Pagination>
<MedlinePgn>267-72</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Reduction may be an important step in the degradation of some highly oxidized environmental pollutants by Phanerochaete chrysosporium. Lignin peroxidases (LiP) from P. chrysosporium are able to catalyze reductive reactions using veratryl alcohol (VA) as a mediator and either oxalate or EDTA as electron donors. Reduction of oxygen to superoxide, monitored by oxygen consumption, was used as a measure of the reductive activity of LiP. In the presence of EDTA, the rate of O2 reduction catalyzed by LiP decreased with time and increasing concentrations of H2O2. When oxalate replaced EDTA, LiP-catalyzed O2 reduction did not decrease with time, and increasing concentrations of H2O2 increased the duration and extent of O2 reduction. LiP was converted to the compound III state in the presence of EDTA, H2O2, and veratryl alcohol. When oxalate replaced EDTA, compound II was observed. The importance of the veratryl alcohol cation radical (VA.+) in the conversion of LiP compound III to active enzyme has been previously examined (D.P. Barr and S.D. Aust, 1994, Arch. Biochem. Biophys. 311, 378-382). We propose that rapid reduction of VA.+ by EDTA results in accumulation of LiP compound III and the loss of activity resulting in a decrease in LiP-catalyzed reduction reactions. Oxalate is less effective in reducing the VA.+, therefore, some VA.+ remains to convert compound III to active enzyme and maintain LiP-catalyzed reduction reactions. Thus oxalate, a normal secondary metabolite of P. chrysosporium, is a suitable candidate for mediating reduction reactions by LiP in vivo.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Goodwin</LastName>
<ForeName>D C</ForeName>
<Initials>DC</Initials>
<AffiliationInfo>
<Affiliation>Biotechnology Center, Utah State University, Logan 84322-4700.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barr</LastName>
<ForeName>D P</ForeName>
<Initials>DP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Aust</LastName>
<ForeName>S D</ForeName>
<Initials>SD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grover</LastName>
<ForeName>T A</ForeName>
<Initials>TA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>ESO4922</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Arch Biochem Biophys</MedlineTA>
<NlmUniqueID>0372430</NlmUniqueID>
<ISSNLinking>0003-9861</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010070">Oxalates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9G34HU7RV0</RegistryNumber>
<NameOfSubstance UI="D004492">Edetic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="C042858">lignin peroxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004492" MajorTopicYN="N">Edetic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066298" MajorTopicYN="N">In Vitro Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010070" MajorTopicYN="N">Oxalates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010101" MajorTopicYN="N">Oxygen Consumption</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013057" MajorTopicYN="N">Spectrum Analysis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1994</Year>
<Month>12</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1994</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1994</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">7986067</ArticleId>
<ArticleId IdType="pii">S0003-9861(84)71499-8</ArticleId>
<ArticleId IdType="doi">10.1006/abbi.1994.1499</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Aust, S D" sort="Aust, S D" uniqKey="Aust S" first="S D" last="Aust">S D Aust</name>
<name sortKey="Barr, D P" sort="Barr, D P" uniqKey="Barr D" first="D P" last="Barr">D P Barr</name>
<name sortKey="Goodwin, D C" sort="Goodwin, D C" uniqKey="Goodwin D" first="D C" last="Goodwin">D C Goodwin</name>
<name sortKey="Grover, T A" sort="Grover, T A" uniqKey="Grover T" first="T A" last="Grover">T A Grover</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D22 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D22 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:7986067
   |texte=   The role of oxalate in lignin peroxidase-catalyzed reduction: protection from compound III accumulation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:7986067" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020