Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Informed strain improvement for lignin degradation by Phanerochaete chrysosporium.

Identifieur interne : 000D06 ( Main/Exploration ); précédent : 000D05; suivant : 000D07

Informed strain improvement for lignin degradation by Phanerochaete chrysosporium.

Auteurs : A M Wyatt [Royaume-Uni] ; P. Broda

Source :

RBID : pubmed:8535509

Descripteurs français

English descriptors

Abstract

The effect of breeding from the white rot fungus Phanerochaete chrysosporium ME446 on performance for lignin mineralization was examined. This model for informed strain improvement without mutagenesis is based on abundant restriction fragment length polymorphisms (RFLPs). Under optimized conditions for lignin mineralization, extracellular manganese peroxidase (MnP) but not lignin peroxidase (LiP) could be detected, so measurement of LiP activity is not a valid assay for lignin degradation. Mineralization of 14C-labelled synthetic lignin (14C-DHP) was used to compare the performance of the wild-type strain ME446 with those of sets of progeny strains. Meiotic progeny from strain ME446, heterokaryotic progeny of crosses between such strains, and meiotic progeny of one heterokaryotic strain were examined. In each case, a minority of strains performed more efficiently than the parental strain ME446. The greatest range of lignin-mineralization performance (70-fold) was found within the set of initial progeny of ME446 and the narrowest was within the set of secondary homokaryotic strains. This is consistent with the view that a moderate number of determinants contribute to lignin mineralization performance. However, performance did not correlate with the possession of any single allele of those for 38 previously defined RFLP markers. The results show that lignin mineralization performance can be improved by cycles of crosses and fruiting, without mutagenesis.

DOI: 10.1099/13500872-141-11-2811
PubMed: 8535509


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Informed strain improvement for lignin degradation by Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Wyatt, A M" sort="Wyatt, A M" uniqKey="Wyatt A" first="A M" last="Wyatt">A M Wyatt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of Science and Technology, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of Science and Technology</wicri:regionArea>
<wicri:noRegion>University of Manchester Institute of Science and Technology</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Broda, P" sort="Broda, P" uniqKey="Broda P" first="P" last="Broda">P. Broda</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1995">1995</date>
<idno type="RBID">pubmed:8535509</idno>
<idno type="pmid">8535509</idno>
<idno type="doi">10.1099/13500872-141-11-2811</idno>
<idno type="wicri:Area/Main/Corpus">000C76</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C76</idno>
<idno type="wicri:Area/Main/Curation">000C76</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C76</idno>
<idno type="wicri:Area/Main/Exploration">000C76</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Informed strain improvement for lignin degradation by Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Wyatt, A M" sort="Wyatt, A M" uniqKey="Wyatt A" first="A M" last="Wyatt">A M Wyatt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of Science and Technology, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of Science and Technology</wicri:regionArea>
<wicri:noRegion>University of Manchester Institute of Science and Technology</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Broda, P" sort="Broda, P" uniqKey="Broda P" first="P" last="Broda">P. Broda</name>
</author>
</analytic>
<series>
<title level="j">Microbiology (Reading, England)</title>
<idno type="ISSN">1350-0872</idno>
<imprint>
<date when="1995" type="published">1995</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (genetics)</term>
<term>Basidiomycota (metabolism)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Crosses, Genetic (MeSH)</term>
<term>DNA, Fungal (genetics)</term>
<term>Genotype (MeSH)</term>
<term>Lignin (metabolism)</term>
<term>Minerals (metabolism)</term>
<term>Peroxidases (metabolism)</term>
<term>Polymorphism, Restriction Fragment Length (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN fongique (génétique)</term>
<term>Basidiomycota (génétique)</term>
<term>Basidiomycota (métabolisme)</term>
<term>Croisements génétiques (MeSH)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Lignine (métabolisme)</term>
<term>Minéraux (métabolisme)</term>
<term>Peroxidases (métabolisme)</term>
<term>Polymorphisme de restriction (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN fongique</term>
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Basidiomycota</term>
<term>Lignin</term>
<term>Minerals</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Basidiomycota</term>
<term>Lignine</term>
<term>Minéraux</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Crosses, Genetic</term>
<term>Genotype</term>
<term>Polymorphism, Restriction Fragment Length</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Croisements génétiques</term>
<term>Dépollution biologique de l'environnement</term>
<term>Génotype</term>
<term>Polymorphisme de restriction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effect of breeding from the white rot fungus Phanerochaete chrysosporium ME446 on performance for lignin mineralization was examined. This model for informed strain improvement without mutagenesis is based on abundant restriction fragment length polymorphisms (RFLPs). Under optimized conditions for lignin mineralization, extracellular manganese peroxidase (MnP) but not lignin peroxidase (LiP) could be detected, so measurement of LiP activity is not a valid assay for lignin degradation. Mineralization of 14C-labelled synthetic lignin (14C-DHP) was used to compare the performance of the wild-type strain ME446 with those of sets of progeny strains. Meiotic progeny from strain ME446, heterokaryotic progeny of crosses between such strains, and meiotic progeny of one heterokaryotic strain were examined. In each case, a minority of strains performed more efficiently than the parental strain ME446. The greatest range of lignin-mineralization performance (70-fold) was found within the set of initial progeny of ME446 and the narrowest was within the set of secondary homokaryotic strains. This is consistent with the view that a moderate number of determinants contribute to lignin mineralization performance. However, performance did not correlate with the possession of any single allele of those for 38 previously defined RFLP markers. The results show that lignin mineralization performance can be improved by cycles of crosses and fruiting, without mutagenesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">8535509</PMID>
<DateCompleted>
<Year>1996</Year>
<Month>02</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1350-0872</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>141 ( Pt 11)</Volume>
<PubDate>
<Year>1995</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Microbiology (Reading, England)</Title>
<ISOAbbreviation>Microbiology (Reading)</ISOAbbreviation>
</Journal>
<ArticleTitle>Informed strain improvement for lignin degradation by Phanerochaete chrysosporium.</ArticleTitle>
<Pagination>
<MedlinePgn>2811-22</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The effect of breeding from the white rot fungus Phanerochaete chrysosporium ME446 on performance for lignin mineralization was examined. This model for informed strain improvement without mutagenesis is based on abundant restriction fragment length polymorphisms (RFLPs). Under optimized conditions for lignin mineralization, extracellular manganese peroxidase (MnP) but not lignin peroxidase (LiP) could be detected, so measurement of LiP activity is not a valid assay for lignin degradation. Mineralization of 14C-labelled synthetic lignin (14C-DHP) was used to compare the performance of the wild-type strain ME446 with those of sets of progeny strains. Meiotic progeny from strain ME446, heterokaryotic progeny of crosses between such strains, and meiotic progeny of one heterokaryotic strain were examined. In each case, a minority of strains performed more efficiently than the parental strain ME446. The greatest range of lignin-mineralization performance (70-fold) was found within the set of initial progeny of ME446 and the narrowest was within the set of secondary homokaryotic strains. This is consistent with the view that a moderate number of determinants contribute to lignin mineralization performance. However, performance did not correlate with the possession of any single allele of those for 38 previously defined RFLP markers. The results show that lignin mineralization performance can be improved by cycles of crosses and fruiting, without mutagenesis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wyatt</LastName>
<ForeName>A M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of Science and Technology, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Broda</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Microbiology (Reading)</MedlineTA>
<NlmUniqueID>9430468</NlmUniqueID>
<ISSNLinking>1350-0872</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008903">Minerals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="C042858">lignin peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.13</RegistryNumber>
<NameOfSubstance UI="C051129">manganese peroxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003433" MajorTopicYN="N">Crosses, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008903" MajorTopicYN="N">Minerals</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012150" MajorTopicYN="N">Polymorphism, Restriction Fragment Length</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1995</Year>
<Month>11</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1995</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1995</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">8535509</ArticleId>
<ArticleId IdType="doi">10.1099/13500872-141-11-2811</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Broda, P" sort="Broda, P" uniqKey="Broda P" first="P" last="Broda">P. Broda</name>
</noCountry>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Wyatt, A M" sort="Wyatt, A M" uniqKey="Wyatt A" first="A M" last="Wyatt">A M Wyatt</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D06 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D06 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:8535509
   |texte=   Informed strain improvement for lignin degradation by Phanerochaete chrysosporium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:8535509" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020