Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

New polymeric model substrates for the study of microbial ligninolysis.

Identifieur interne : 000C97 ( Main/Exploration ); précédent : 000C96; suivant : 000C98

New polymeric model substrates for the study of microbial ligninolysis.

Auteurs : S. Kawai [États-Unis] ; K A Jensen ; W. Bao ; K E Hammel

Source :

RBID : pubmed:7574649

Descripteurs français

English descriptors

Abstract

Lignin model dimers are valuable tools for the elucidation of microbial ligninolytic mechanisms, but their low molecular weight (MW) makes them susceptible to nonligninolytic intracellular metabolism. To address this problem, we prepared lignin models in which unlabeled and alpha-14C-labeled beta-O-4-linked dimers were covalently attached to 8,000-MW polyethylene glycol (PEG) or to 45,000-MW polystyrene (PS). The water-soluble PEG-linked model was mineralized extensively in liquid medium and in solid wood cultures by the white rot fungus Phanerochaete chrysosporium, whereas the water-insoluble PS-linked model was not. Gel permeation chromatography showed that P. chrysosporium degraded the PEG-linked model by cleaving its lignin dimer substructure rather than its PEG moiety. C alpha-C beta cleavage was the major fate of the PEG-linked model after incubation with P. chrysosporium in vivo and also after oxidation with P. chrysosporium lignin peroxidase in vitro. The brown rot fungus Gloeophyllum trabeum, which unlike P. chrysosporium lacks a vigorous extracellular ligninolytic system, was unable to degrade the PEG-linked model efficiently. These results show that PEG-linked lignin models are a marked improvement over the low-MW models that have been used in the past.

DOI: 10.1128/AEM.61.9.3407-3414.1995
PubMed: 7574649
PubMed Central: PMC167619


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">New polymeric model substrates for the study of microbial ligninolysis.</title>
<author>
<name sortKey="Kawai, S" sort="Kawai, S" uniqKey="Kawai S" first="S" last="Kawai">S. Kawai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Microbial and Biochemical Technology, USDA Forest Products Laboratory, Madison, Wisconsin 53705, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Microbial and Biochemical Technology, USDA Forest Products Laboratory, Madison, Wisconsin 53705</wicri:regionArea>
<wicri:noRegion>Wisconsin 53705</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jensen, K A" sort="Jensen, K A" uniqKey="Jensen K" first="K A" last="Jensen">K A Jensen</name>
</author>
<author>
<name sortKey="Bao, W" sort="Bao, W" uniqKey="Bao W" first="W" last="Bao">W. Bao</name>
</author>
<author>
<name sortKey="Hammel, K E" sort="Hammel, K E" uniqKey="Hammel K" first="K E" last="Hammel">K E Hammel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1995">1995</date>
<idno type="RBID">pubmed:7574649</idno>
<idno type="pmid">7574649</idno>
<idno type="pmc">PMC167619</idno>
<idno type="doi">10.1128/AEM.61.9.3407-3414.1995</idno>
<idno type="wicri:Area/Main/Corpus">000C86</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C86</idno>
<idno type="wicri:Area/Main/Curation">000C86</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C86</idno>
<idno type="wicri:Area/Main/Exploration">000C86</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">New polymeric model substrates for the study of microbial ligninolysis.</title>
<author>
<name sortKey="Kawai, S" sort="Kawai, S" uniqKey="Kawai S" first="S" last="Kawai">S. Kawai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Microbial and Biochemical Technology, USDA Forest Products Laboratory, Madison, Wisconsin 53705, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Microbial and Biochemical Technology, USDA Forest Products Laboratory, Madison, Wisconsin 53705</wicri:regionArea>
<wicri:noRegion>Wisconsin 53705</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jensen, K A" sort="Jensen, K A" uniqKey="Jensen K" first="K A" last="Jensen">K A Jensen</name>
</author>
<author>
<name sortKey="Bao, W" sort="Bao, W" uniqKey="Bao W" first="W" last="Bao">W. Bao</name>
</author>
<author>
<name sortKey="Hammel, K E" sort="Hammel, K E" uniqKey="Hammel K" first="K E" last="Hammel">K E Hammel</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="ISSN">0099-2240</idno>
<imprint>
<date when="1995" type="published">1995</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (metabolism)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Biopolymers (chemistry)</term>
<term>Biopolymers (metabolism)</term>
<term>Lignin (chemistry)</term>
<term>Lignin (metabolism)</term>
<term>Models, Chemical (MeSH)</term>
<term>Molecular Structure (MeSH)</term>
<term>Molecular Weight (MeSH)</term>
<term>Peroxidases (metabolism)</term>
<term>Polyethylene Glycols (chemistry)</term>
<term>Polyethylene Glycols (metabolism)</term>
<term>Polystyrenes (chemistry)</term>
<term>Polystyrenes (metabolism)</term>
<term>Substrate Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basidiomycota (métabolisme)</term>
<term>Biopolymères (composition chimique)</term>
<term>Biopolymères (métabolisme)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Lignine (composition chimique)</term>
<term>Lignine (métabolisme)</term>
<term>Masse moléculaire (MeSH)</term>
<term>Modèles chimiques (MeSH)</term>
<term>Peroxidases (métabolisme)</term>
<term>Polystyrènes (composition chimique)</term>
<term>Polystyrènes (métabolisme)</term>
<term>Polyéthylène glycols (composition chimique)</term>
<term>Polyéthylène glycols (métabolisme)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Structure moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Biopolymers</term>
<term>Lignin</term>
<term>Polyethylene Glycols</term>
<term>Polystyrenes</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Biopolymères</term>
<term>Lignine</term>
<term>Polystyrènes</term>
<term>Polyéthylène glycols</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Basidiomycota</term>
<term>Biopolymers</term>
<term>Lignin</term>
<term>Peroxidases</term>
<term>Polyethylene Glycols</term>
<term>Polystyrenes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Basidiomycota</term>
<term>Biopolymères</term>
<term>Lignine</term>
<term>Peroxidases</term>
<term>Polystyrènes</term>
<term>Polyéthylène glycols</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Models, Chemical</term>
<term>Molecular Structure</term>
<term>Molecular Weight</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dépollution biologique de l'environnement</term>
<term>Masse moléculaire</term>
<term>Modèles chimiques</term>
<term>Spécificité du substrat</term>
<term>Structure moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lignin model dimers are valuable tools for the elucidation of microbial ligninolytic mechanisms, but their low molecular weight (MW) makes them susceptible to nonligninolytic intracellular metabolism. To address this problem, we prepared lignin models in which unlabeled and alpha-14C-labeled beta-O-4-linked dimers were covalently attached to 8,000-MW polyethylene glycol (PEG) or to 45,000-MW polystyrene (PS). The water-soluble PEG-linked model was mineralized extensively in liquid medium and in solid wood cultures by the white rot fungus Phanerochaete chrysosporium, whereas the water-insoluble PS-linked model was not. Gel permeation chromatography showed that P. chrysosporium degraded the PEG-linked model by cleaving its lignin dimer substructure rather than its PEG moiety. C alpha-C beta cleavage was the major fate of the PEG-linked model after incubation with P. chrysosporium in vivo and also after oxidation with P. chrysosporium lignin peroxidase in vitro. The brown rot fungus Gloeophyllum trabeum, which unlike P. chrysosporium lacks a vigorous extracellular ligninolytic system, was unable to degrade the PEG-linked model efficiently. These results show that PEG-linked lignin models are a marked improvement over the low-MW models that have been used in the past.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">7574649</PMID>
<DateCompleted>
<Year>1995</Year>
<Month>11</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0099-2240</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>61</Volume>
<Issue>9</Issue>
<PubDate>
<Year>1995</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>New polymeric model substrates for the study of microbial ligninolysis.</ArticleTitle>
<Pagination>
<MedlinePgn>3407-14</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Lignin model dimers are valuable tools for the elucidation of microbial ligninolytic mechanisms, but their low molecular weight (MW) makes them susceptible to nonligninolytic intracellular metabolism. To address this problem, we prepared lignin models in which unlabeled and alpha-14C-labeled beta-O-4-linked dimers were covalently attached to 8,000-MW polyethylene glycol (PEG) or to 45,000-MW polystyrene (PS). The water-soluble PEG-linked model was mineralized extensively in liquid medium and in solid wood cultures by the white rot fungus Phanerochaete chrysosporium, whereas the water-insoluble PS-linked model was not. Gel permeation chromatography showed that P. chrysosporium degraded the PEG-linked model by cleaving its lignin dimer substructure rather than its PEG moiety. C alpha-C beta cleavage was the major fate of the PEG-linked model after incubation with P. chrysosporium in vivo and also after oxidation with P. chrysosporium lignin peroxidase in vitro. The brown rot fungus Gloeophyllum trabeum, which unlike P. chrysosporium lacks a vigorous extracellular ligninolytic system, was unable to degrade the PEG-linked model efficiently. These results show that PEG-linked lignin models are a marked improvement over the low-MW models that have been used in the past.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kawai</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute for Microbial and Biochemical Technology, USDA Forest Products Laboratory, Madison, Wisconsin 53705, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jensen</LastName>
<ForeName>K A</ForeName>
<Initials>KA</Initials>
<Suffix>Jr</Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Bao</LastName>
<ForeName>W</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hammel</LastName>
<ForeName>K E</ForeName>
<Initials>KE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001704">Biopolymers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011137">Polystyrenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3WJQ0SDW1A</RegistryNumber>
<NameOfSubstance UI="D011092">Polyethylene Glycols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="C042858">lignin peroxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001704" MajorTopicYN="N">Biopolymers</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="Y">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015394" MajorTopicYN="N">Molecular Structure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008970" MajorTopicYN="N">Molecular Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011092" MajorTopicYN="N">Polyethylene Glycols</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011137" MajorTopicYN="N">Polystyrenes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1995</Year>
<Month>9</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1995</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">7574649</ArticleId>
<ArticleId IdType="pmc">PMC167619</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.61.9.3407-3414.1995</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Jun;60(6):1956-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Jun 15;268(17):12274-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8509364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1987 Sep;53(9):2242-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12794-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1974 May;118(2):534-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4597447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1971 Sep;107(3):718-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4999413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1987;41:465-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3318677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1975 Jul;72(7):2515-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1058470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1986 May 15;236(1):279-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3024619</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bao, W" sort="Bao, W" uniqKey="Bao W" first="W" last="Bao">W. Bao</name>
<name sortKey="Hammel, K E" sort="Hammel, K E" uniqKey="Hammel K" first="K E" last="Hammel">K E Hammel</name>
<name sortKey="Jensen, K A" sort="Jensen, K A" uniqKey="Jensen K" first="K A" last="Jensen">K A Jensen</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Kawai, S" sort="Kawai, S" uniqKey="Kawai S" first="S" last="Kawai">S. Kawai</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C97 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C97 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:7574649
   |texte=   New polymeric model substrates for the study of microbial ligninolysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:7574649" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020