Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differential expression in Phanerochaete chrysosporium of membrane-associated proteins relevant to lignin degradation.

Identifieur interne : 000698 ( Main/Exploration ); précédent : 000697; suivant : 000699

Differential expression in Phanerochaete chrysosporium of membrane-associated proteins relevant to lignin degradation.

Auteurs : Semarjit Shary [États-Unis] ; Alexander N. Kapich ; Ellen A. Panisko ; Jon K. Magnuson ; Daniel Cullen ; Kenneth E. Hammel

Source :

RBID : pubmed:18849459

Descripteurs français

English descriptors

Abstract

Fungal lignin-degrading systems likely include membrane-associated proteins that participate in diverse processes such as uptake and oxidation of lignin fragments, production of ligninolytic secondary metabolites, and defense of the mycelium against ligninolytic oxidants. Little is known about the nature or regulation of these membrane-associated components. We grew the white rot basidiomycete Phanerochaete chrysosporium on cellulose or glucose as the carbon source and monitored the mineralization of a (14)C-labeled synthetic lignin by these cultures to assess their ligninolytic competence. The results showed that the cellulose-grown cultures were ligninolytic, whereas the glucose-grown ones were not. We isolated microsomal membrane fractions from both types of culture and analyzed tryptic digests of their proteins by shotgun liquid chromatography-tandem mass spectrometry. Comparison of the results against the predicted P. chrysosporium proteome showed that a catalase (Joint Genome Institute P. chrysosporium protein identification number [I.D.] 124398), an alcohol oxidase (126879), two transporters (137220 and 132234), and two cytochrome P450s (5011 and 8912) were upregulated under ligninolytic conditions. Quantitative reverse transcription-PCR assays showed that RNA transcripts encoding all of these proteins were also more abundant in ligninolytic cultures. Catalase 124398, alcohol oxidase 126879, and transporter 137220 were found in a proteomic analysis of partially purified plasma membranes from ligninolytic P. chrysosporium and are therefore most likely associated with the outer envelope of the fungus.

DOI: 10.1128/AEM.01997-08
PubMed: 18849459
PubMed Central: PMC2592923


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differential expression in Phanerochaete chrysosporium of membrane-associated proteins relevant to lignin degradation.</title>
<author>
<name sortKey="Shary, Semarjit" sort="Shary, Semarjit" uniqKey="Shary S" first="Semarjit" last="Shary">Semarjit Shary</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute for Microbial and Biochemical Technology, USDA Forest Products Laboratory, Madison, WI 53705, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Microbial and Biochemical Technology, USDA Forest Products Laboratory, Madison, WI 53705</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kapich, Alexander N" sort="Kapich, Alexander N" uniqKey="Kapich A" first="Alexander N" last="Kapich">Alexander N. Kapich</name>
</author>
<author>
<name sortKey="Panisko, Ellen A" sort="Panisko, Ellen A" uniqKey="Panisko E" first="Ellen A" last="Panisko">Ellen A. Panisko</name>
</author>
<author>
<name sortKey="Magnuson, Jon K" sort="Magnuson, Jon K" uniqKey="Magnuson J" first="Jon K" last="Magnuson">Jon K. Magnuson</name>
</author>
<author>
<name sortKey="Cullen, Daniel" sort="Cullen, Daniel" uniqKey="Cullen D" first="Daniel" last="Cullen">Daniel Cullen</name>
</author>
<author>
<name sortKey="Hammel, Kenneth E" sort="Hammel, Kenneth E" uniqKey="Hammel K" first="Kenneth E" last="Hammel">Kenneth E. Hammel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18849459</idno>
<idno type="pmid">18849459</idno>
<idno type="doi">10.1128/AEM.01997-08</idno>
<idno type="pmc">PMC2592923</idno>
<idno type="wicri:Area/Main/Corpus">000665</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000665</idno>
<idno type="wicri:Area/Main/Curation">000665</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000665</idno>
<idno type="wicri:Area/Main/Exploration">000665</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Differential expression in Phanerochaete chrysosporium of membrane-associated proteins relevant to lignin degradation.</title>
<author>
<name sortKey="Shary, Semarjit" sort="Shary, Semarjit" uniqKey="Shary S" first="Semarjit" last="Shary">Semarjit Shary</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute for Microbial and Biochemical Technology, USDA Forest Products Laboratory, Madison, WI 53705, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Microbial and Biochemical Technology, USDA Forest Products Laboratory, Madison, WI 53705</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kapich, Alexander N" sort="Kapich, Alexander N" uniqKey="Kapich A" first="Alexander N" last="Kapich">Alexander N. Kapich</name>
</author>
<author>
<name sortKey="Panisko, Ellen A" sort="Panisko, Ellen A" uniqKey="Panisko E" first="Ellen A" last="Panisko">Ellen A. Panisko</name>
</author>
<author>
<name sortKey="Magnuson, Jon K" sort="Magnuson, Jon K" uniqKey="Magnuson J" first="Jon K" last="Magnuson">Jon K. Magnuson</name>
</author>
<author>
<name sortKey="Cullen, Daniel" sort="Cullen, Daniel" uniqKey="Cullen D" first="Daniel" last="Cullen">Daniel Cullen</name>
</author>
<author>
<name sortKey="Hammel, Kenneth E" sort="Hammel, Kenneth E" uniqKey="Hammel K" first="Kenneth E" last="Hammel">Kenneth E. Hammel</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon Radioisotopes (metabolism)</term>
<term>Cellulose (metabolism)</term>
<term>Chromatography, Liquid (MeSH)</term>
<term>Enzymes (biosynthesis)</term>
<term>Fungal Proteins (biosynthesis)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Glucose (metabolism)</term>
<term>Intracellular Membranes (chemistry)</term>
<term>Lignin (metabolism)</term>
<term>Membrane Proteins (biosynthesis)</term>
<term>Membrane Transport Proteins (biosynthesis)</term>
<term>Microsomes (chemistry)</term>
<term>Phanerochaete (chemistry)</term>
<term>Phanerochaete (metabolism)</term>
<term>Tandem Mass Spectrometry (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Cellulose (métabolisme)</term>
<term>Chromatographie en phase liquide (MeSH)</term>
<term>Enzymes (biosynthèse)</term>
<term>Glucose (métabolisme)</term>
<term>Lignine (métabolisme)</term>
<term>Membranes intracellulaires (composition chimique)</term>
<term>Microsomes (composition chimique)</term>
<term>Phanerochaete (composition chimique)</term>
<term>Phanerochaete (métabolisme)</term>
<term>Protéines de transport membranaire (biosynthèse)</term>
<term>Protéines fongiques (biosynthèse)</term>
<term>Protéines membranaires (biosynthèse)</term>
<term>Radio-isotopes du carbone (métabolisme)</term>
<term>Spectrométrie de masse en tandem (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Enzymes</term>
<term>Fungal Proteins</term>
<term>Membrane Proteins</term>
<term>Membrane Transport Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Radioisotopes</term>
<term>Cellulose</term>
<term>Glucose</term>
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Enzymes</term>
<term>Protéines de transport membranaire</term>
<term>Protéines fongiques</term>
<term>Protéines membranaires</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Intracellular Membranes</term>
<term>Microsomes</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Membranes intracellulaires</term>
<term>Microsomes</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellulose</term>
<term>Glucose</term>
<term>Lignine</term>
<term>Phanerochaete</term>
<term>Radio-isotopes du carbone</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatography, Liquid</term>
<term>Gene Expression Profiling</term>
<term>Tandem Mass Spectrometry</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Chromatographie en phase liquide</term>
<term>Spectrométrie de masse en tandem</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fungal lignin-degrading systems likely include membrane-associated proteins that participate in diverse processes such as uptake and oxidation of lignin fragments, production of ligninolytic secondary metabolites, and defense of the mycelium against ligninolytic oxidants. Little is known about the nature or regulation of these membrane-associated components. We grew the white rot basidiomycete Phanerochaete chrysosporium on cellulose or glucose as the carbon source and monitored the mineralization of a (14)C-labeled synthetic lignin by these cultures to assess their ligninolytic competence. The results showed that the cellulose-grown cultures were ligninolytic, whereas the glucose-grown ones were not. We isolated microsomal membrane fractions from both types of culture and analyzed tryptic digests of their proteins by shotgun liquid chromatography-tandem mass spectrometry. Comparison of the results against the predicted P. chrysosporium proteome showed that a catalase (Joint Genome Institute P. chrysosporium protein identification number [I.D.] 124398), an alcohol oxidase (126879), two transporters (137220 and 132234), and two cytochrome P450s (5011 and 8912) were upregulated under ligninolytic conditions. Quantitative reverse transcription-PCR assays showed that RNA transcripts encoding all of these proteins were also more abundant in ligninolytic cultures. Catalase 124398, alcohol oxidase 126879, and transporter 137220 were found in a proteomic analysis of partially purified plasma membranes from ligninolytic P. chrysosporium and are therefore most likely associated with the outer envelope of the fungus.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18849459</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>12</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>74</Volume>
<Issue>23</Issue>
<PubDate>
<Year>2008</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Differential expression in Phanerochaete chrysosporium of membrane-associated proteins relevant to lignin degradation.</ArticleTitle>
<Pagination>
<MedlinePgn>7252-7</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.01997-08</ELocationID>
<Abstract>
<AbstractText>Fungal lignin-degrading systems likely include membrane-associated proteins that participate in diverse processes such as uptake and oxidation of lignin fragments, production of ligninolytic secondary metabolites, and defense of the mycelium against ligninolytic oxidants. Little is known about the nature or regulation of these membrane-associated components. We grew the white rot basidiomycete Phanerochaete chrysosporium on cellulose or glucose as the carbon source and monitored the mineralization of a (14)C-labeled synthetic lignin by these cultures to assess their ligninolytic competence. The results showed that the cellulose-grown cultures were ligninolytic, whereas the glucose-grown ones were not. We isolated microsomal membrane fractions from both types of culture and analyzed tryptic digests of their proteins by shotgun liquid chromatography-tandem mass spectrometry. Comparison of the results against the predicted P. chrysosporium proteome showed that a catalase (Joint Genome Institute P. chrysosporium protein identification number [I.D.] 124398), an alcohol oxidase (126879), two transporters (137220 and 132234), and two cytochrome P450s (5011 and 8912) were upregulated under ligninolytic conditions. Quantitative reverse transcription-PCR assays showed that RNA transcripts encoding all of these proteins were also more abundant in ligninolytic cultures. Catalase 124398, alcohol oxidase 126879, and transporter 137220 were found in a proteomic analysis of partially purified plasma membranes from ligninolytic P. chrysosporium and are therefore most likely associated with the outer envelope of the fungus.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shary</LastName>
<ForeName>Semarjit</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute for Microbial and Biochemical Technology, USDA Forest Products Laboratory, Madison, WI 53705, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kapich</LastName>
<ForeName>Alexander N</ForeName>
<Initials>AN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Panisko</LastName>
<ForeName>Ellen A</ForeName>
<Initials>EA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Magnuson</LastName>
<ForeName>Jon K</ForeName>
<Initials>JK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cullen</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hammel</LastName>
<ForeName>Kenneth E</ForeName>
<Initials>KE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>10</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002250">Carbon Radioisotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004798">Enzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026901">Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002250" MajorTopicYN="N">Carbon Radioisotopes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002853" MajorTopicYN="N">Chromatography, Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004798" MajorTopicYN="N">Enzymes</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007425" MajorTopicYN="N">Intracellular Membranes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026901" MajorTopicYN="N">Membrane Transport Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008861" MajorTopicYN="N">Microsomes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053719" MajorTopicYN="N">Tandem Mass Spectrometry</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>12</Month>
<Day>30</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18849459</ArticleId>
<ArticleId IdType="pii">AEM.01997-08</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.01997-08</ArticleId>
<ArticleId IdType="pmc">PMC2592923</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Proteome Res. 2008 Jun;7(6):2342-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18435559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12428-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8901598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2005 Jan;47(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15551134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Oct;73(19):6241-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17660304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1999 Jul;17(7):676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10404161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jun;22(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2000 Apr;21(6):1054-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10786880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Jun 15;268(17):12274-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8509364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1982 Sep;44(3):732-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16346099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Nov 15;33(45):13349-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7947743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2003 Feb;38(1):10-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12553932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Feb;60(2):709-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Oct;73(20):6691-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17766457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1992 Oct;138(10):2205-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1479349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2007 Sep;153(Pt 9):3023-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17768245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2006 May;43(5):343-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16524749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1998 Mar;11(3):167-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9487692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Nov;69(11):6500-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14602606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Nov 25;267(33):23688-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1429709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):349-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18359268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1998 May;66(5):1953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9573075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 Apr;7(8):1249-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17366474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2001 Mar;19(3):242-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11231557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2001 Dec 1;73(23):5683-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11774908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2007 Oct;4(10):787-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17901868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Feb;67(2):948-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11157267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2007 Feb;44(2):77-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16971147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Basic Microbiol. 2001;41(5):281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11688214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2000 Mar 10;78(2):185-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1975 Jul;72(7):2515-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1058470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24226387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2005 Jul 21;118(1):17-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15888348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2005 Oct;5(15):3919-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16217726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2005 Dec;274(5):454-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16231151</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Wisconsin</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Cullen, Daniel" sort="Cullen, Daniel" uniqKey="Cullen D" first="Daniel" last="Cullen">Daniel Cullen</name>
<name sortKey="Hammel, Kenneth E" sort="Hammel, Kenneth E" uniqKey="Hammel K" first="Kenneth E" last="Hammel">Kenneth E. Hammel</name>
<name sortKey="Kapich, Alexander N" sort="Kapich, Alexander N" uniqKey="Kapich A" first="Alexander N" last="Kapich">Alexander N. Kapich</name>
<name sortKey="Magnuson, Jon K" sort="Magnuson, Jon K" uniqKey="Magnuson J" first="Jon K" last="Magnuson">Jon K. Magnuson</name>
<name sortKey="Panisko, Ellen A" sort="Panisko, Ellen A" uniqKey="Panisko E" first="Ellen A" last="Panisko">Ellen A. Panisko</name>
</noCountry>
<country name="États-Unis">
<region name="Wisconsin">
<name sortKey="Shary, Semarjit" sort="Shary, Semarjit" uniqKey="Shary S" first="Semarjit" last="Shary">Semarjit Shary</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000698 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000698 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18849459
   |texte=   Differential expression in Phanerochaete chrysosporium of membrane-associated proteins relevant to lignin degradation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18849459" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020