Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium.

Identifieur interne : 000576 ( Main/Exploration ); précédent : 000575; suivant : 000577

Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium.

Auteurs : Amber Vanden Wymelenberg [États-Unis] ; Jill Gaskell ; Michael Mozuch ; Grzegorz Sabat ; John Ralph ; Oleksandr Skyba ; Shawn D. Mansfield ; Robert A. Blanchette ; Diego Martinez ; Igor Grigoriev ; Philip J. Kersten ; Dan Cullen

Source :

RBID : pubmed:20400566

Descripteurs français

English descriptors

Abstract

Cellulose degradation by brown rot fungi, such as Postia placenta, is poorly understood relative to the phylogenetically related white rot basidiomycete, Phanerochaete chrysosporium. To elucidate the number, structure, and regulation of genes involved in lignocellulosic cell wall attack, secretome and transcriptome analyses were performed on both wood decay fungi cultured for 5 days in media containing ball-milled aspen or glucose as the sole carbon source. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), a total of 67 and 79 proteins were identified in the extracellular fluids of P. placenta and P. chrysosporium cultures, respectively. Viewed together with transcript profiles, P. chrysosporium employs an array of extracellular glycosyl hydrolases to simultaneously attack cellulose and hemicelluloses. In contrast, under these same conditions, P. placenta secretes an array of hemicellulases but few potential cellulases. The two species display distinct expression patterns for oxidoreductase-encoding genes. In P. placenta, these patterns are consistent with an extracellular Fenton system and include the upregulation of genes involved in iron acquisition, in the synthesis of low-molecular-weight quinones, and possibly in redox cycling reactions.

DOI: 10.1128/AEM.00058-10
PubMed: 20400566
PubMed Central: PMC2876446


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Vanden Wymelenberg, Amber" sort="Vanden Wymelenberg, Amber" uniqKey="Vanden Wymelenberg A" first="Amber" last="Vanden Wymelenberg">Amber Vanden Wymelenberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Products Lab, One Gifford Pinchot Drive, Madison, WI 53726, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Products Lab, One Gifford Pinchot Drive, Madison, WI 53726</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gaskell, Jill" sort="Gaskell, Jill" uniqKey="Gaskell J" first="Jill" last="Gaskell">Jill Gaskell</name>
</author>
<author>
<name sortKey="Mozuch, Michael" sort="Mozuch, Michael" uniqKey="Mozuch M" first="Michael" last="Mozuch">Michael Mozuch</name>
</author>
<author>
<name sortKey="Sabat, Grzegorz" sort="Sabat, Grzegorz" uniqKey="Sabat G" first="Grzegorz" last="Sabat">Grzegorz Sabat</name>
</author>
<author>
<name sortKey="Ralph, John" sort="Ralph, John" uniqKey="Ralph J" first="John" last="Ralph">John Ralph</name>
</author>
<author>
<name sortKey="Skyba, Oleksandr" sort="Skyba, Oleksandr" uniqKey="Skyba O" first="Oleksandr" last="Skyba">Oleksandr Skyba</name>
</author>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
</author>
<author>
<name sortKey="Blanchette, Robert A" sort="Blanchette, Robert A" uniqKey="Blanchette R" first="Robert A" last="Blanchette">Robert A. Blanchette</name>
</author>
<author>
<name sortKey="Martinez, Diego" sort="Martinez, Diego" uniqKey="Martinez D" first="Diego" last="Martinez">Diego Martinez</name>
</author>
<author>
<name sortKey="Grigoriev, Igor" sort="Grigoriev, Igor" uniqKey="Grigoriev I" first="Igor" last="Grigoriev">Igor Grigoriev</name>
</author>
<author>
<name sortKey="Kersten, Philip J" sort="Kersten, Philip J" uniqKey="Kersten P" first="Philip J" last="Kersten">Philip J. Kersten</name>
</author>
<author>
<name sortKey="Cullen, Dan" sort="Cullen, Dan" uniqKey="Cullen D" first="Dan" last="Cullen">Dan Cullen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20400566</idno>
<idno type="pmid">20400566</idno>
<idno type="doi">10.1128/AEM.00058-10</idno>
<idno type="pmc">PMC2876446</idno>
<idno type="wicri:Area/Main/Corpus">000558</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000558</idno>
<idno type="wicri:Area/Main/Curation">000558</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000558</idno>
<idno type="wicri:Area/Main/Exploration">000558</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Vanden Wymelenberg, Amber" sort="Vanden Wymelenberg, Amber" uniqKey="Vanden Wymelenberg A" first="Amber" last="Vanden Wymelenberg">Amber Vanden Wymelenberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Products Lab, One Gifford Pinchot Drive, Madison, WI 53726, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Products Lab, One Gifford Pinchot Drive, Madison, WI 53726</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gaskell, Jill" sort="Gaskell, Jill" uniqKey="Gaskell J" first="Jill" last="Gaskell">Jill Gaskell</name>
</author>
<author>
<name sortKey="Mozuch, Michael" sort="Mozuch, Michael" uniqKey="Mozuch M" first="Michael" last="Mozuch">Michael Mozuch</name>
</author>
<author>
<name sortKey="Sabat, Grzegorz" sort="Sabat, Grzegorz" uniqKey="Sabat G" first="Grzegorz" last="Sabat">Grzegorz Sabat</name>
</author>
<author>
<name sortKey="Ralph, John" sort="Ralph, John" uniqKey="Ralph J" first="John" last="Ralph">John Ralph</name>
</author>
<author>
<name sortKey="Skyba, Oleksandr" sort="Skyba, Oleksandr" uniqKey="Skyba O" first="Oleksandr" last="Skyba">Oleksandr Skyba</name>
</author>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
</author>
<author>
<name sortKey="Blanchette, Robert A" sort="Blanchette, Robert A" uniqKey="Blanchette R" first="Robert A" last="Blanchette">Robert A. Blanchette</name>
</author>
<author>
<name sortKey="Martinez, Diego" sort="Martinez, Diego" uniqKey="Martinez D" first="Diego" last="Martinez">Diego Martinez</name>
</author>
<author>
<name sortKey="Grigoriev, Igor" sort="Grigoriev, Igor" uniqKey="Grigoriev I" first="Igor" last="Grigoriev">Igor Grigoriev</name>
</author>
<author>
<name sortKey="Kersten, Philip J" sort="Kersten, Philip J" uniqKey="Kersten P" first="Philip J" last="Kersten">Philip J. Kersten</name>
</author>
<author>
<name sortKey="Cullen, Dan" sort="Cullen, Dan" uniqKey="Cullen D" first="Dan" last="Cullen">Dan Cullen</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cellulose (metabolism)</term>
<term>Chromatography, Liquid (MeSH)</term>
<term>Coriolaceae (chemistry)</term>
<term>Coriolaceae (genetics)</term>
<term>Fungal Proteins (analysis)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Glycosyltransferases (metabolism)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Phanerochaete (chemistry)</term>
<term>Phanerochaete (genetics)</term>
<term>Polysaccharides (metabolism)</term>
<term>Proteome (MeSH)</term>
<term>Tandem Mass Spectrometry (MeSH)</term>
<term>Wood (metabolism)</term>
<term>Wood (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Bois (microbiologie)</term>
<term>Bois (métabolisme)</term>
<term>Cellulose (métabolisme)</term>
<term>Chromatographie en phase liquide (MeSH)</term>
<term>Coriolaceae (composition chimique)</term>
<term>Coriolaceae (génétique)</term>
<term>Glycosyltransferase (métabolisme)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Phanerochaete (composition chimique)</term>
<term>Phanerochaete (génétique)</term>
<term>Polyosides (métabolisme)</term>
<term>Protéines fongiques (analyse)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Protéome (MeSH)</term>
<term>Spectrométrie de masse en tandem (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cellulose</term>
<term>Fungal Proteins</term>
<term>Glycosyltransferases</term>
<term>Oxidoreductases</term>
<term>Polysaccharides</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Coriolaceae</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Coriolaceae</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Coriolaceae</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Coriolaceae</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Bois</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bois</term>
<term>Cellulose</term>
<term>Glycosyltransferase</term>
<term>Oxidoreductases</term>
<term>Polyosides</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatography, Liquid</term>
<term>Gene Expression Profiling</term>
<term>Proteome</term>
<term>Tandem Mass Spectrometry</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Chromatographie en phase liquide</term>
<term>Protéome</term>
<term>Spectrométrie de masse en tandem</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cellulose degradation by brown rot fungi, such as Postia placenta, is poorly understood relative to the phylogenetically related white rot basidiomycete, Phanerochaete chrysosporium. To elucidate the number, structure, and regulation of genes involved in lignocellulosic cell wall attack, secretome and transcriptome analyses were performed on both wood decay fungi cultured for 5 days in media containing ball-milled aspen or glucose as the sole carbon source. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), a total of 67 and 79 proteins were identified in the extracellular fluids of P. placenta and P. chrysosporium cultures, respectively. Viewed together with transcript profiles, P. chrysosporium employs an array of extracellular glycosyl hydrolases to simultaneously attack cellulose and hemicelluloses. In contrast, under these same conditions, P. placenta secretes an array of hemicellulases but few potential cellulases. The two species display distinct expression patterns for oxidoreductase-encoding genes. In P. placenta, these patterns are consistent with an extracellular Fenton system and include the upregulation of genes involved in iron acquisition, in the synthesis of low-molecular-weight quinones, and possibly in redox cycling reactions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20400566</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>09</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>76</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium.</ArticleTitle>
<Pagination>
<MedlinePgn>3599-610</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.00058-10</ELocationID>
<Abstract>
<AbstractText>Cellulose degradation by brown rot fungi, such as Postia placenta, is poorly understood relative to the phylogenetically related white rot basidiomycete, Phanerochaete chrysosporium. To elucidate the number, structure, and regulation of genes involved in lignocellulosic cell wall attack, secretome and transcriptome analyses were performed on both wood decay fungi cultured for 5 days in media containing ball-milled aspen or glucose as the sole carbon source. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), a total of 67 and 79 proteins were identified in the extracellular fluids of P. placenta and P. chrysosporium cultures, respectively. Viewed together with transcript profiles, P. chrysosporium employs an array of extracellular glycosyl hydrolases to simultaneously attack cellulose and hemicelluloses. In contrast, under these same conditions, P. placenta secretes an array of hemicellulases but few potential cellulases. The two species display distinct expression patterns for oxidoreductase-encoding genes. In P. placenta, these patterns are consistent with an extracellular Fenton system and include the upregulation of genes involved in iron acquisition, in the synthesis of low-molecular-weight quinones, and possibly in redox cycling reactions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vanden Wymelenberg</LastName>
<ForeName>Amber</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Forest Products Lab, One Gifford Pinchot Drive, Madison, WI 53726, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gaskell</LastName>
<ForeName>Jill</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mozuch</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sabat</LastName>
<ForeName>Grzegorz</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ralph</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Skyba</LastName>
<ForeName>Oleksandr</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mansfield</LastName>
<ForeName>Shawn D</ForeName>
<Initials>SD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Blanchette</LastName>
<ForeName>Robert A</ForeName>
<Initials>RA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Martinez</LastName>
<ForeName>Diego</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grigoriev</LastName>
<ForeName>Igor</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kersten</LastName>
<ForeName>Philip J</ForeName>
<Initials>PJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cullen</LastName>
<ForeName>Dan</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>04</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011134">Polysaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8024-50-8</RegistryNumber>
<NameOfSubstance UI="C007916">hemicellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.-</RegistryNumber>
<NameOfSubstance UI="D016695">Glycosyltransferases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002853" MajorTopicYN="N">Chromatography, Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055453" MajorTopicYN="N">Coriolaceae</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016695" MajorTopicYN="N">Glycosyltransferases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011134" MajorTopicYN="N">Polysaccharides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="Y">Proteome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053719" MajorTopicYN="N">Tandem Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>4</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>4</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20400566</ArticleId>
<ArticleId IdType="pii">AEM.00058-10</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.00058-10</ArticleId>
<ArticleId IdType="pmc">PMC2876446</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biotechnol. 2007 Feb 20;128(3):500-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17218034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2000 Sep 15;72(18):4266-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11008759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2005 Jan;47(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15551134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1954-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19193860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Oct;73(19):6241-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17660304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2004 Aug;150(Pt 8):2775-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15289573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jun;22(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Dec;29(4):365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11726920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2001 Apr;50(2):215-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12116929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2009 Jun;55(3):273-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19396602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biodegradation. 2008 Jul;19(4):555-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17973193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2007 May;111(Pt 5):509-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1999 Jan;259(1-2):88-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9914479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jun;75(12):3944-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1997 Mar 1;339(1):190-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9056249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Aug;71(8):4548-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16085848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Oct 31;383(1):144-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1994 Aug;176(16):4838-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8050996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Apr;81(8):2280-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2007 Sep;153(Pt 9):3023-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17768245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2006 May;43(5):343-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16524749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2008 Sep;80(4):719-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18654772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2008 Jul;10(7):1844-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2007 Jun;75(3):609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17308906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1979 Dec 1;108(1):229-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">520550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2001 Apr 27;87(1):43-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11267698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Nov 25;267(33):23688-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1429709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stat Appl Genet Mol Biol. 2004;3:Article3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16646809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Apr;87(8):2936-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jul;72(7):4871-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jun;75(12):4058-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2009 Feb;191(2):133-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18854978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 1991 Nov;21(1-2):143-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1367687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Nov 20;531(3):483-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12435597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2009 Nov;73(11):2483-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19897892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol. 2009 Jun;47(3):308-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19557348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1987 May;169(5):2195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3553159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2006 May;273(10):2308-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16650005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Nov 6;283(4):707-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9790834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2008 May;32(3):501-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18371173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2003 Sep 1;75(17):4646-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14632076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1987;41:465-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3318677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18838391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Jan;70(1):324-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14711659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Jun;67(6):2705-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11375184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1994 Aug 29;351(1):128-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8076681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1981 Mar 25;147(1):195-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7265238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2005 Jul 21;118(1):17-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15888348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2005 Oct;5(15):3919-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16217726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biostatistics. 2003 Apr;4(2):249-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12925520</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Wisconsin</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Blanchette, Robert A" sort="Blanchette, Robert A" uniqKey="Blanchette R" first="Robert A" last="Blanchette">Robert A. Blanchette</name>
<name sortKey="Cullen, Dan" sort="Cullen, Dan" uniqKey="Cullen D" first="Dan" last="Cullen">Dan Cullen</name>
<name sortKey="Gaskell, Jill" sort="Gaskell, Jill" uniqKey="Gaskell J" first="Jill" last="Gaskell">Jill Gaskell</name>
<name sortKey="Grigoriev, Igor" sort="Grigoriev, Igor" uniqKey="Grigoriev I" first="Igor" last="Grigoriev">Igor Grigoriev</name>
<name sortKey="Kersten, Philip J" sort="Kersten, Philip J" uniqKey="Kersten P" first="Philip J" last="Kersten">Philip J. Kersten</name>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
<name sortKey="Martinez, Diego" sort="Martinez, Diego" uniqKey="Martinez D" first="Diego" last="Martinez">Diego Martinez</name>
<name sortKey="Mozuch, Michael" sort="Mozuch, Michael" uniqKey="Mozuch M" first="Michael" last="Mozuch">Michael Mozuch</name>
<name sortKey="Ralph, John" sort="Ralph, John" uniqKey="Ralph J" first="John" last="Ralph">John Ralph</name>
<name sortKey="Sabat, Grzegorz" sort="Sabat, Grzegorz" uniqKey="Sabat G" first="Grzegorz" last="Sabat">Grzegorz Sabat</name>
<name sortKey="Skyba, Oleksandr" sort="Skyba, Oleksandr" uniqKey="Skyba O" first="Oleksandr" last="Skyba">Oleksandr Skyba</name>
</noCountry>
<country name="États-Unis">
<region name="Wisconsin">
<name sortKey="Vanden Wymelenberg, Amber" sort="Vanden Wymelenberg, Amber" uniqKey="Vanden Wymelenberg A" first="Amber" last="Vanden Wymelenberg">Amber Vanden Wymelenberg</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000576 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000576 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20400566
   |texte=   Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20400566" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020