Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A steady-state theory for processive cellulases.

Identifieur interne : 000397 ( Main/Exploration ); précédent : 000396; suivant : 000398

A steady-state theory for processive cellulases.

Auteurs : Nicolaj Cruys-Bagger [Danemark] ; Jens Elmerdahl ; Eigil Praestgaard ; Kim Borch ; Peter Westh

Source :

RBID : pubmed:23786663

Descripteurs français

English descriptors

Abstract

Processive enzymes perform sequential steps of catalysis without dissociating from their polymeric substrate. This mechanism is considered essential for efficient enzymatic hydrolysis of insoluble cellulose (particularly crystalline cellulose), but a theoretical framework for processive kinetics remains to be fully developed. In this paper, we suggest a deterministic kinetic model that relies on a processive set of enzyme reactions and a quasi steady-state assumption. It is shown that this approach is practicable in the sense that it leads to mathematically simple expressions for the steady-state rate, and only requires data from standard assay techniques as experimental input. Specifically, it is shown that the processive reaction rate at steady state may be expressed by a hyperbolic function related to the conventional Michaelis-Menten equation. The main difference is a 'kinetic processivity coefficient', which represents the probability of the enzyme dissociating from the substrate strand before completing n sequential catalytic steps, where n is the mean processivity number measured experimentally. Typical processive cellulases have high substrate affinity, and therefore this probability is low. This has significant kinetic implications, for example the maximal specific rate (V(max)/E₀) for processive cellulases is much lower than the catalytic rate constant (k(cat)). We discuss how relationships based on this theory may be used in both comparative and mechanistic analyses of cellulases.

DOI: 10.1111/febs.12397
PubMed: 23786663


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A steady-state theory for processive cellulases.</title>
<author>
<name sortKey="Cruys Bagger, Nicolaj" sort="Cruys Bagger, Nicolaj" uniqKey="Cruys Bagger N" first="Nicolaj" last="Cruys-Bagger">Nicolaj Cruys-Bagger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Science, Systems and Models, Research Unit for Functional Biomaterials, Roskilde University, Roskilde, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Department of Science, Systems and Models, Research Unit for Functional Biomaterials, Roskilde University, Roskilde</wicri:regionArea>
<wicri:noRegion>Roskilde</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Elmerdahl, Jens" sort="Elmerdahl, Jens" uniqKey="Elmerdahl J" first="Jens" last="Elmerdahl">Jens Elmerdahl</name>
</author>
<author>
<name sortKey="Praestgaard, Eigil" sort="Praestgaard, Eigil" uniqKey="Praestgaard E" first="Eigil" last="Praestgaard">Eigil Praestgaard</name>
</author>
<author>
<name sortKey="Borch, Kim" sort="Borch, Kim" uniqKey="Borch K" first="Kim" last="Borch">Kim Borch</name>
</author>
<author>
<name sortKey="Westh, Peter" sort="Westh, Peter" uniqKey="Westh P" first="Peter" last="Westh">Peter Westh</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23786663</idno>
<idno type="pmid">23786663</idno>
<idno type="doi">10.1111/febs.12397</idno>
<idno type="wicri:Area/Main/Corpus">000361</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000361</idno>
<idno type="wicri:Area/Main/Curation">000361</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000361</idno>
<idno type="wicri:Area/Main/Exploration">000361</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A steady-state theory for processive cellulases.</title>
<author>
<name sortKey="Cruys Bagger, Nicolaj" sort="Cruys Bagger, Nicolaj" uniqKey="Cruys Bagger N" first="Nicolaj" last="Cruys-Bagger">Nicolaj Cruys-Bagger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Science, Systems and Models, Research Unit for Functional Biomaterials, Roskilde University, Roskilde, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Department of Science, Systems and Models, Research Unit for Functional Biomaterials, Roskilde University, Roskilde</wicri:regionArea>
<wicri:noRegion>Roskilde</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Elmerdahl, Jens" sort="Elmerdahl, Jens" uniqKey="Elmerdahl J" first="Jens" last="Elmerdahl">Jens Elmerdahl</name>
</author>
<author>
<name sortKey="Praestgaard, Eigil" sort="Praestgaard, Eigil" uniqKey="Praestgaard E" first="Eigil" last="Praestgaard">Eigil Praestgaard</name>
</author>
<author>
<name sortKey="Borch, Kim" sort="Borch, Kim" uniqKey="Borch K" first="Kim" last="Borch">Kim Borch</name>
</author>
<author>
<name sortKey="Westh, Peter" sort="Westh, Peter" uniqKey="Westh P" first="Peter" last="Westh">Peter Westh</name>
</author>
</analytic>
<series>
<title level="j">The FEBS journal</title>
<idno type="eISSN">1742-4658</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms (MeSH)</term>
<term>Cellobiose (metabolism)</term>
<term>Cellulases (metabolism)</term>
<term>Cellulose (chemistry)</term>
<term>Cellulose (metabolism)</term>
<term>Cellulose 1,4-beta-Cellobiosidase (metabolism)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Hydrolysis (MeSH)</term>
<term>Hypocrea (enzymology)</term>
<term>Hypocrea (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Phanerochaete (enzymology)</term>
<term>Phanerochaete (metabolism)</term>
<term>Solubility (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes (MeSH)</term>
<term>Cellobiose (métabolisme)</term>
<term>Cellulases (métabolisme)</term>
<term>Cellulose (composition chimique)</term>
<term>Cellulose (métabolisme)</term>
<term>Cellulose 1,4-beta-cellobiosidase (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Hydrolyse (MeSH)</term>
<term>Hypocrea (enzymologie)</term>
<term>Hypocrea (métabolisme)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Phanerochaete (enzymologie)</term>
<term>Phanerochaete (métabolisme)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Solubilité (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cellulose</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cellobiose</term>
<term>Cellulases</term>
<term>Cellulose</term>
<term>Cellulose 1,4-beta-Cellobiosidase</term>
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cellulose</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Hypocrea</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Hypocrea</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Hypocrea</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellobiose</term>
<term>Cellulases</term>
<term>Cellulose</term>
<term>Cellulose 1,4-beta-cellobiosidase</term>
<term>Hypocrea</term>
<term>Phanerochaete</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Hydrolysis</term>
<term>Kinetics</term>
<term>Models, Molecular</term>
<term>Solubility</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Cinétique</term>
<term>Hydrolyse</term>
<term>Modèles moléculaires</term>
<term>Solubilité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Processive enzymes perform sequential steps of catalysis without dissociating from their polymeric substrate. This mechanism is considered essential for efficient enzymatic hydrolysis of insoluble cellulose (particularly crystalline cellulose), but a theoretical framework for processive kinetics remains to be fully developed. In this paper, we suggest a deterministic kinetic model that relies on a processive set of enzyme reactions and a quasi steady-state assumption. It is shown that this approach is practicable in the sense that it leads to mathematically simple expressions for the steady-state rate, and only requires data from standard assay techniques as experimental input. Specifically, it is shown that the processive reaction rate at steady state may be expressed by a hyperbolic function related to the conventional Michaelis-Menten equation. The main difference is a 'kinetic processivity coefficient', which represents the probability of the enzyme dissociating from the substrate strand before completing n sequential catalytic steps, where n is the mean processivity number measured experimentally. Typical processive cellulases have high substrate affinity, and therefore this probability is low. This has significant kinetic implications, for example the maximal specific rate (V(max)/E₀) for processive cellulases is much lower than the catalytic rate constant (k(cat)). We discuss how relationships based on this theory may be used in both comparative and mechanistic analyses of cellulases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23786663</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>10</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>07</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1742-4658</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>280</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2013</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>The FEBS journal</Title>
<ISOAbbreviation>FEBS J</ISOAbbreviation>
</Journal>
<ArticleTitle>A steady-state theory for processive cellulases.</ArticleTitle>
<Pagination>
<MedlinePgn>3952-61</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/febs.12397</ELocationID>
<Abstract>
<AbstractText>Processive enzymes perform sequential steps of catalysis without dissociating from their polymeric substrate. This mechanism is considered essential for efficient enzymatic hydrolysis of insoluble cellulose (particularly crystalline cellulose), but a theoretical framework for processive kinetics remains to be fully developed. In this paper, we suggest a deterministic kinetic model that relies on a processive set of enzyme reactions and a quasi steady-state assumption. It is shown that this approach is practicable in the sense that it leads to mathematically simple expressions for the steady-state rate, and only requires data from standard assay techniques as experimental input. Specifically, it is shown that the processive reaction rate at steady state may be expressed by a hyperbolic function related to the conventional Michaelis-Menten equation. The main difference is a 'kinetic processivity coefficient', which represents the probability of the enzyme dissociating from the substrate strand before completing n sequential catalytic steps, where n is the mean processivity number measured experimentally. Typical processive cellulases have high substrate affinity, and therefore this probability is low. This has significant kinetic implications, for example the maximal specific rate (V(max)/E₀) for processive cellulases is much lower than the catalytic rate constant (k(cat)). We discuss how relationships based on this theory may be used in both comparative and mechanistic analyses of cellulases.</AbstractText>
<CopyrightInformation>© 2013 FEBS.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cruys-Bagger</LastName>
<ForeName>Nicolaj</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Science, Systems and Models, Research Unit for Functional Biomaterials, Roskilde University, Roskilde, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Elmerdahl</LastName>
<ForeName>Jens</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Praestgaard</LastName>
<ForeName>Eigil</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Borch</LastName>
<ForeName>Kim</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Westh</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>FEBS J</MedlineTA>
<NlmUniqueID>101229646</NlmUniqueID>
<ISSNLinking>1742-464X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>16462-44-5</RegistryNumber>
<NameOfSubstance UI="D002475">Cellobiose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.-</RegistryNumber>
<NameOfSubstance UI="D044602">Cellulases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.91</RegistryNumber>
<NameOfSubstance UI="D043366">Cellulose 1,4-beta-Cellobiosidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002475" MajorTopicYN="N">Cellobiose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044602" MajorTopicYN="N">Cellulases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043366" MajorTopicYN="N">Cellulose 1,4-beta-Cellobiosidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035901" MajorTopicYN="N">Hypocrea</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="Y">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012995" MajorTopicYN="N">Solubility</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">cellobiohydrolase</Keyword>
<Keyword MajorTopicYN="N">deterministic model</Keyword>
<Keyword MajorTopicYN="N">enzyme kinetics</Keyword>
<Keyword MajorTopicYN="N">rate-limiting step</Keyword>
<Keyword MajorTopicYN="N">sequential-step mechanism</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>03</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>05</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>06</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>6</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>6</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23786663</ArticleId>
<ArticleId IdType="doi">10.1111/febs.12397</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Danemark</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Borch, Kim" sort="Borch, Kim" uniqKey="Borch K" first="Kim" last="Borch">Kim Borch</name>
<name sortKey="Elmerdahl, Jens" sort="Elmerdahl, Jens" uniqKey="Elmerdahl J" first="Jens" last="Elmerdahl">Jens Elmerdahl</name>
<name sortKey="Praestgaard, Eigil" sort="Praestgaard, Eigil" uniqKey="Praestgaard E" first="Eigil" last="Praestgaard">Eigil Praestgaard</name>
<name sortKey="Westh, Peter" sort="Westh, Peter" uniqKey="Westh P" first="Peter" last="Westh">Peter Westh</name>
</noCountry>
<country name="Danemark">
<noRegion>
<name sortKey="Cruys Bagger, Nicolaj" sort="Cruys Bagger, Nicolaj" uniqKey="Cruys Bagger N" first="Nicolaj" last="Cruys-Bagger">Nicolaj Cruys-Bagger</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000397 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000397 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23786663
   |texte=   A steady-state theory for processive cellulases.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23786663" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020