Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of novel gene expression related to glyoxal oxidase by agro-infiltration of the leaves of accession Baihe-35-1 of Vitis pseudoreticulata involved in production of H2O2 for resistance to Erysiphe necator.

Identifieur interne : 000386 ( Main/Exploration ); précédent : 000385; suivant : 000387

Characterization of novel gene expression related to glyoxal oxidase by agro-infiltration of the leaves of accession Baihe-35-1 of Vitis pseudoreticulata involved in production of H2O2 for resistance to Erysiphe necator.

Auteurs : Heqing Zhao [République populaire de Chine] ; Xin Guan ; Yan Xu ; Yuejin Wang

Source :

RBID : pubmed:23090239

Descripteurs français

English descriptors

Abstract

Glyoxal oxidase (GLOX), an extracellular H(2)O(2)-producing enzyme, has been reported in Phanerochaete chrysosporium and Ustilago maydis. We previously isolated a grapevine GLOX gene from the highly resistant to Erysiphe necator Chinese wild Vitis pseudoreticulata accession Baihe-35-1 and designated it as VpGLOX (GenBank accession no. DQ201181). Transient expression of VpGLOX can suppress Powdery Mildew in susceptible genotype were studied. To further investigate the function of the VpGLOX gene, real-time PCR and Western blot analysis were performed to examine expression patterns at transcriptional and translational levels, respectively. The results showed that VpGLOX expression at the transcriptional level increased significantly in the disease-resistant accession Baihe-35-1 after Erysiphe necator inoculation, but no significant changes in the susceptible accession, V. pseudoreticulata accession Guangxi-2 could be observed. As evident from a Western blot analysis, VpGLOX protein increased slightly in Baihe-35-1 after E. necator inoculation, but not statistical significant difference changes in Guangxi-2. The immunolocalization via immunogold electron microscopy showed that VpGLOX was mainly located in the adaxial epidermal cell wall of E. necator-inoculated leaves of both Baihe-35-1 and Guangxi-2. Agrobacterium-mediated transient expression assays revealed that VpGLOX expression could produce H(2)O(2), which may directly play a role in defense mechanism during plant-pathogen interactions. Our results could provide further insight into the biological role of VpGLOX in the defense response against E. necator in V. pseudoreticulata.

DOI: 10.1007/s00709-012-0462-y
PubMed: 23090239


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of novel gene expression related to glyoxal oxidase by agro-infiltration of the leaves of accession Baihe-35-1 of Vitis pseudoreticulata involved in production of H2O2 for resistance to Erysiphe necator.</title>
<author>
<name sortKey="Zhao, Heqing" sort="Zhao, Heqing" uniqKey="Zhao H" first="Heqing" last="Zhao">Heqing Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Guan, Xin" sort="Guan, Xin" uniqKey="Guan X" first="Xin" last="Guan">Xin Guan</name>
</author>
<author>
<name sortKey="Xu, Yan" sort="Xu, Yan" uniqKey="Xu Y" first="Yan" last="Xu">Yan Xu</name>
</author>
<author>
<name sortKey="Wang, Yuejin" sort="Wang, Yuejin" uniqKey="Wang Y" first="Yuejin" last="Wang">Yuejin Wang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23090239</idno>
<idno type="pmid">23090239</idno>
<idno type="doi">10.1007/s00709-012-0462-y</idno>
<idno type="wicri:Area/Main/Corpus">000396</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000396</idno>
<idno type="wicri:Area/Main/Curation">000396</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000396</idno>
<idno type="wicri:Area/Main/Exploration">000396</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of novel gene expression related to glyoxal oxidase by agro-infiltration of the leaves of accession Baihe-35-1 of Vitis pseudoreticulata involved in production of H2O2 for resistance to Erysiphe necator.</title>
<author>
<name sortKey="Zhao, Heqing" sort="Zhao, Heqing" uniqKey="Zhao H" first="Heqing" last="Zhao">Heqing Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Guan, Xin" sort="Guan, Xin" uniqKey="Guan X" first="Xin" last="Guan">Xin Guan</name>
</author>
<author>
<name sortKey="Xu, Yan" sort="Xu, Yan" uniqKey="Xu Y" first="Yan" last="Xu">Yan Xu</name>
</author>
<author>
<name sortKey="Wang, Yuejin" sort="Wang, Yuejin" uniqKey="Wang Y" first="Yuejin" last="Wang">Yuejin Wang</name>
</author>
</analytic>
<series>
<title level="j">Protoplasma</title>
<idno type="eISSN">1615-6102</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alcohol Oxidoreductases (genetics)</term>
<term>Alcohol Oxidoreductases (metabolism)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Ascomycota (MeSH)</term>
<term>Ascorbate Peroxidases (metabolism)</term>
<term>Catalase (metabolism)</term>
<term>Cell Wall (enzymology)</term>
<term>Disease Resistance (MeSH)</term>
<term>Gene Expression (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Leaves (enzymology)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (microbiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Vitis (enzymology)</term>
<term>Vitis (genetics)</term>
<term>Vitis (immunology)</term>
<term>Vitis (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alcohol oxidoreductases (génétique)</term>
<term>Alcohol oxidoreductases (métabolisme)</term>
<term>Ascomycota (MeSH)</term>
<term>Ascorbate peroxidases (métabolisme)</term>
<term>Catalase (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Expression des gènes (MeSH)</term>
<term>Feuilles de plante (enzymologie)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Maladies des plantes (immunologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Paroi cellulaire (enzymologie)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Résistance à la maladie (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Vitis (enzymologie)</term>
<term>Vitis (génétique)</term>
<term>Vitis (immunologie)</term>
<term>Vitis (microbiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
<term>Ascorbate Peroxidases</term>
<term>Catalase</term>
<term>Hydrogen Peroxide</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Paroi cellulaire</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Cell Wall</term>
<term>Plant Leaves</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Alcohol oxidoreductases</term>
<term>Feuilles de plante</term>
<term>Protéines végétales</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Plant Diseases</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Maladies des plantes</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alcohol oxidoreductases</term>
<term>Ascorbate peroxidases</term>
<term>Catalase</term>
<term>Peroxyde d'hydrogène</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Ascomycota</term>
<term>Disease Resistance</term>
<term>Gene Expression</term>
<term>Gene Expression Regulation, Plant</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Ascomycota</term>
<term>Données de séquences moléculaires</term>
<term>Expression des gènes</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Résistance à la maladie</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glyoxal oxidase (GLOX), an extracellular H(2)O(2)-producing enzyme, has been reported in Phanerochaete chrysosporium and Ustilago maydis. We previously isolated a grapevine GLOX gene from the highly resistant to Erysiphe necator Chinese wild Vitis pseudoreticulata accession Baihe-35-1 and designated it as VpGLOX (GenBank accession no. DQ201181). Transient expression of VpGLOX can suppress Powdery Mildew in susceptible genotype were studied. To further investigate the function of the VpGLOX gene, real-time PCR and Western blot analysis were performed to examine expression patterns at transcriptional and translational levels, respectively. The results showed that VpGLOX expression at the transcriptional level increased significantly in the disease-resistant accession Baihe-35-1 after Erysiphe necator inoculation, but no significant changes in the susceptible accession, V. pseudoreticulata accession Guangxi-2 could be observed. As evident from a Western blot analysis, VpGLOX protein increased slightly in Baihe-35-1 after E. necator inoculation, but not statistical significant difference changes in Guangxi-2. The immunolocalization via immunogold electron microscopy showed that VpGLOX was mainly located in the adaxial epidermal cell wall of E. necator-inoculated leaves of both Baihe-35-1 and Guangxi-2. Agrobacterium-mediated transient expression assays revealed that VpGLOX expression could produce H(2)O(2), which may directly play a role in defense mechanism during plant-pathogen interactions. Our results could provide further insight into the biological role of VpGLOX in the defense response against E. necator in V. pseudoreticulata.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23090239</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>12</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1615-6102</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>250</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Protoplasma</Title>
<ISOAbbreviation>Protoplasma</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of novel gene expression related to glyoxal oxidase by agro-infiltration of the leaves of accession Baihe-35-1 of Vitis pseudoreticulata involved in production of H2O2 for resistance to Erysiphe necator.</ArticleTitle>
<Pagination>
<MedlinePgn>765-77</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00709-012-0462-y</ELocationID>
<Abstract>
<AbstractText>Glyoxal oxidase (GLOX), an extracellular H(2)O(2)-producing enzyme, has been reported in Phanerochaete chrysosporium and Ustilago maydis. We previously isolated a grapevine GLOX gene from the highly resistant to Erysiphe necator Chinese wild Vitis pseudoreticulata accession Baihe-35-1 and designated it as VpGLOX (GenBank accession no. DQ201181). Transient expression of VpGLOX can suppress Powdery Mildew in susceptible genotype were studied. To further investigate the function of the VpGLOX gene, real-time PCR and Western blot analysis were performed to examine expression patterns at transcriptional and translational levels, respectively. The results showed that VpGLOX expression at the transcriptional level increased significantly in the disease-resistant accession Baihe-35-1 after Erysiphe necator inoculation, but no significant changes in the susceptible accession, V. pseudoreticulata accession Guangxi-2 could be observed. As evident from a Western blot analysis, VpGLOX protein increased slightly in Baihe-35-1 after E. necator inoculation, but not statistical significant difference changes in Guangxi-2. The immunolocalization via immunogold electron microscopy showed that VpGLOX was mainly located in the adaxial epidermal cell wall of E. necator-inoculated leaves of both Baihe-35-1 and Guangxi-2. Agrobacterium-mediated transient expression assays revealed that VpGLOX expression could produce H(2)O(2), which may directly play a role in defense mechanism during plant-pathogen interactions. Our results could provide further insight into the biological role of VpGLOX in the defense response against E. necator in V. pseudoreticulata.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Heqing</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guan</LastName>
<ForeName>Xin</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yuejin</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>10</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Austria</Country>
<MedlineTA>Protoplasma</MedlineTA>
<NlmUniqueID>9806853</NlmUniqueID>
<ISSNLinking>0033-183X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.-</RegistryNumber>
<NameOfSubstance UI="D000429">Alcohol Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.3.-</RegistryNumber>
<NameOfSubstance UI="C052371">glyoxal oxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.11</RegistryNumber>
<NameOfSubstance UI="D060387">Ascorbate Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.6</RegistryNumber>
<NameOfSubstance UI="D002374">Catalase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000429" MajorTopicYN="N">Alcohol Oxidoreductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001203" MajorTopicYN="Y">Ascomycota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060387" MajorTopicYN="N">Ascorbate Peroxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002374" MajorTopicYN="N">Catalase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>05</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>10</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>12</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23090239</ArticleId>
<ArticleId IdType="doi">10.1007/s00709-012-0462-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Protoplasma. 2008;233(1-2):83-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18615235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2006 Nov;28(11):1091-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1970 Aug 15;227(5259):680-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5432063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Dec;223(1):77-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16049678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):373-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1984 Jun;139(2):487-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6476384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Sep;115(1):137-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9306697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 Mar;114(3):343-353</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2008 Feb;116(3):427-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18064436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2005 Jul;24(5):255-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15856234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2007;355:1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17093296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:205-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2010;48:269-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20687833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Oct;8(10):1773-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8914325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 Jun;27(6):1053-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18317773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 1995 May;39(1):71-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11536693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jul;72(7):4871-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:251-275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Feb;140(2):558-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Sep;64(9):3536-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9726913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Nov;177(21):6106-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7592374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1978 Apr 17;85(2):581-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">648535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1987 May;169(5):2195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3553159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Oct;9(10):490-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15465684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jan;146(1):236-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17993546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Jan 12;337(6203):138-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2911348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Nov;145(3):961-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17885081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Feb;134(2):858-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14764907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2011 Apr;248(2):415-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20512385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2010 Jan 12;10:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20067610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 May 11;9:54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19432948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 May;135(1):574-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7411-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8346264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Jan;13(1):179-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11158538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1981 Apr;112(2):195-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6266278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Jan;231(2):475-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19937257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Mar;227(4):867-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18224366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2005 Feb;272(6):639-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15578222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Guan, Xin" sort="Guan, Xin" uniqKey="Guan X" first="Xin" last="Guan">Xin Guan</name>
<name sortKey="Wang, Yuejin" sort="Wang, Yuejin" uniqKey="Wang Y" first="Yuejin" last="Wang">Yuejin Wang</name>
<name sortKey="Xu, Yan" sort="Xu, Yan" uniqKey="Xu Y" first="Yan" last="Xu">Yan Xu</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhao, Heqing" sort="Zhao, Heqing" uniqKey="Zhao H" first="Heqing" last="Zhao">Heqing Zhao</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000386 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000386 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23090239
   |texte=   Characterization of novel gene expression related to glyoxal oxidase by agro-infiltration of the leaves of accession Baihe-35-1 of Vitis pseudoreticulata involved in production of H2O2 for resistance to Erysiphe necator.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23090239" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020