Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural, biochemical, and computational characterization of the glycoside hydrolase family 7 cellobiohydrolase of the tree-killing fungus Heterobasidion irregulare.

Identifieur interne : 000360 ( Main/Exploration ); précédent : 000359; suivant : 000361

Structural, biochemical, and computational characterization of the glycoside hydrolase family 7 cellobiohydrolase of the tree-killing fungus Heterobasidion irregulare.

Auteurs : Majid Haddad Momeni [Suède] ; Christina M. Payne ; Henrik Hansson ; Nils Egil Mikkelsen ; Jesper Svedberg ; Ke Engström ; Mats Sandgren ; Gregg T. Beckham ; Jerry St Hlberg

Source :

RBID : pubmed:23303184

Descripteurs français

English descriptors

Abstract

Root rot fungi of the Heterobasidion annosum complex are the most damaging pathogens in temperate forests, and the recently sequenced Heterobasidion irregulare genome revealed over 280 carbohydrate-active enzymes. Here, H. irregulare was grown on biomass, and the most abundant protein in the culture filtrate was identified as the only family 7 glycoside hydrolase in the genome, which consists of a single catalytic domain, lacking a linker and carbohydrate-binding module. The enzyme, HirCel7A, was characterized biochemically to determine the optimal conditions for activity. HirCel7A was crystallized and the structure, refined at 1.7 Å resolution, confirms that HirCel7A is a cellobiohydrolase rather than an endoglucanase, with a cellulose-binding tunnel that is more closed than Phanerochaete chrysosporium Cel7D and more open than Hypocrea jecorina Cel7A, suggesting intermediate enzyme properties. Molecular simulations were conducted to ascertain differences in enzyme-ligand interactions, ligand solvation, and loop flexibility between the family 7 glycoside hydrolase cellobiohydrolases from H. irregulare, H. jecorina, and P. chrysosporium. The structural comparisons and simulations suggest significant differences in enzyme-ligand interactions at the tunnel entrance in the -7 to -4 binding sites and suggest that a tyrosine residue at the tunnel entrance of HirCel7A may serve as an additional ligand-binding site. Additionally, the loops over the active site in H. jecorina Cel7A are more closed than loops in the other two enzymes, which has implications for the degree of processivity, endo-initiation, and substrate dissociation. Overall, this study highlights molecular level features important to understanding this biologically and industrially important family of glycoside hydrolases.

DOI: 10.1074/jbc.M112.440891
PubMed: 23303184
PubMed Central: PMC3581431


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural, biochemical, and computational characterization of the glycoside hydrolase family 7 cellobiohydrolase of the tree-killing fungus Heterobasidion irregulare.</title>
<author>
<name sortKey="Momeni, Majid Haddad" sort="Momeni, Majid Haddad" uniqKey="Momeni M" first="Majid Haddad" last="Momeni">Majid Haddad Momeni</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Biology, Swedish University of Agricultural Sciences, SE-751 24 Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Molecular Biology, Swedish University of Agricultural Sciences, SE-751 24 Uppsala</wicri:regionArea>
<wicri:noRegion>SE-751 24 Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Payne, Christina M" sort="Payne, Christina M" uniqKey="Payne C" first="Christina M" last="Payne">Christina M. Payne</name>
</author>
<author>
<name sortKey="Hansson, Henrik" sort="Hansson, Henrik" uniqKey="Hansson H" first="Henrik" last="Hansson">Henrik Hansson</name>
</author>
<author>
<name sortKey="Mikkelsen, Nils Egil" sort="Mikkelsen, Nils Egil" uniqKey="Mikkelsen N" first="Nils Egil" last="Mikkelsen">Nils Egil Mikkelsen</name>
</author>
<author>
<name sortKey="Svedberg, Jesper" sort="Svedberg, Jesper" uniqKey="Svedberg J" first="Jesper" last="Svedberg">Jesper Svedberg</name>
</author>
<author>
<name sortKey="Engstrom, Ke" sort="Engstrom, Ke" uniqKey="Engstrom " first=" Ke" last="Engström"> Ke Engström</name>
</author>
<author>
<name sortKey="Sandgren, Mats" sort="Sandgren, Mats" uniqKey="Sandgren M" first="Mats" last="Sandgren">Mats Sandgren</name>
</author>
<author>
<name sortKey="Beckham, Gregg T" sort="Beckham, Gregg T" uniqKey="Beckham G" first="Gregg T" last="Beckham">Gregg T. Beckham</name>
</author>
<author>
<name sortKey="St Hlberg, Jerry" sort="St Hlberg, Jerry" uniqKey="St Hlberg J" first="Jerry" last="St Hlberg">Jerry St Hlberg</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23303184</idno>
<idno type="pmid">23303184</idno>
<idno type="doi">10.1074/jbc.M112.440891</idno>
<idno type="pmc">PMC3581431</idno>
<idno type="wicri:Area/Main/Corpus">000384</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000384</idno>
<idno type="wicri:Area/Main/Curation">000384</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000384</idno>
<idno type="wicri:Area/Main/Exploration">000384</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural, biochemical, and computational characterization of the glycoside hydrolase family 7 cellobiohydrolase of the tree-killing fungus Heterobasidion irregulare.</title>
<author>
<name sortKey="Momeni, Majid Haddad" sort="Momeni, Majid Haddad" uniqKey="Momeni M" first="Majid Haddad" last="Momeni">Majid Haddad Momeni</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Biology, Swedish University of Agricultural Sciences, SE-751 24 Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Molecular Biology, Swedish University of Agricultural Sciences, SE-751 24 Uppsala</wicri:regionArea>
<wicri:noRegion>SE-751 24 Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Payne, Christina M" sort="Payne, Christina M" uniqKey="Payne C" first="Christina M" last="Payne">Christina M. Payne</name>
</author>
<author>
<name sortKey="Hansson, Henrik" sort="Hansson, Henrik" uniqKey="Hansson H" first="Henrik" last="Hansson">Henrik Hansson</name>
</author>
<author>
<name sortKey="Mikkelsen, Nils Egil" sort="Mikkelsen, Nils Egil" uniqKey="Mikkelsen N" first="Nils Egil" last="Mikkelsen">Nils Egil Mikkelsen</name>
</author>
<author>
<name sortKey="Svedberg, Jesper" sort="Svedberg, Jesper" uniqKey="Svedberg J" first="Jesper" last="Svedberg">Jesper Svedberg</name>
</author>
<author>
<name sortKey="Engstrom, Ke" sort="Engstrom, Ke" uniqKey="Engstrom " first=" Ke" last="Engström"> Ke Engström</name>
</author>
<author>
<name sortKey="Sandgren, Mats" sort="Sandgren, Mats" uniqKey="Sandgren M" first="Mats" last="Sandgren">Mats Sandgren</name>
</author>
<author>
<name sortKey="Beckham, Gregg T" sort="Beckham, Gregg T" uniqKey="Beckham G" first="Gregg T" last="Beckham">Gregg T. Beckham</name>
</author>
<author>
<name sortKey="St Hlberg, Jerry" sort="St Hlberg, Jerry" uniqKey="St Hlberg J" first="Jerry" last="St Hlberg">Jerry St Hlberg</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Binding Sites (MeSH)</term>
<term>Biofuels (MeSH)</term>
<term>Cellulase (chemistry)</term>
<term>Cellulase (metabolism)</term>
<term>Cellulose (metabolism)</term>
<term>Cellulose 1,4-beta-Cellobiosidase (metabolism)</term>
<term>Computer Simulation (MeSH)</term>
<term>Crystallography, X-Ray (methods)</term>
<term>Glycoside Hydrolases (chemistry)</term>
<term>Glycoside Hydrolases (metabolism)</term>
<term>Glycoside Hydrolases (physiology)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Hydrolysis (MeSH)</term>
<term>Hypocrea (metabolism)</term>
<term>Ligands (MeSH)</term>
<term>Molecular Conformation (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phanerochaete (metabolism)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Trees (microbiology)</term>
<term>Trichoderma (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (microbiologie)</term>
<term>Biocarburants (MeSH)</term>
<term>Cellulase (composition chimique)</term>
<term>Cellulase (métabolisme)</term>
<term>Cellulose (métabolisme)</term>
<term>Cellulose 1,4-beta-cellobiosidase (métabolisme)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Conformation moléculaire (MeSH)</term>
<term>Cristallographie aux rayons X (méthodes)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Glycosidases (composition chimique)</term>
<term>Glycosidases (métabolisme)</term>
<term>Glycosidases (physiologie)</term>
<term>Hydrolyse (MeSH)</term>
<term>Hypocrea (métabolisme)</term>
<term>Ligands (MeSH)</term>
<term>Phanerochaete (métabolisme)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Simulation numérique (MeSH)</term>
<term>Sites de fixation (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Trichoderma (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cellulase</term>
<term>Glycoside Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cellulase</term>
<term>Cellulose</term>
<term>Cellulose 1,4-beta-Cellobiosidase</term>
<term>Glycoside Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Glycoside Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Biofuels</term>
<term>Ligands</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cellulase</term>
<term>Glycosidases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Hypocrea</term>
<term>Phanerochaete</term>
<term>Trichoderma</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Crystallography, X-Ray</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Arbres</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellulase</term>
<term>Cellulose</term>
<term>Cellulose 1,4-beta-cellobiosidase</term>
<term>Glycosidases</term>
<term>Hypocrea</term>
<term>Phanerochaete</term>
<term>Trichoderma</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Cristallographie aux rayons X</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Glycosidases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Computer Simulation</term>
<term>Hydrogen-Ion Concentration</term>
<term>Hydrolysis</term>
<term>Molecular Conformation</term>
<term>Molecular Sequence Data</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biocarburants</term>
<term>Concentration en ions d'hydrogène</term>
<term>Conformation moléculaire</term>
<term>Données de séquences moléculaires</term>
<term>Hydrolyse</term>
<term>Ligands</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Simulation numérique</term>
<term>Sites de fixation</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Root rot fungi of the Heterobasidion annosum complex are the most damaging pathogens in temperate forests, and the recently sequenced Heterobasidion irregulare genome revealed over 280 carbohydrate-active enzymes. Here, H. irregulare was grown on biomass, and the most abundant protein in the culture filtrate was identified as the only family 7 glycoside hydrolase in the genome, which consists of a single catalytic domain, lacking a linker and carbohydrate-binding module. The enzyme, HirCel7A, was characterized biochemically to determine the optimal conditions for activity. HirCel7A was crystallized and the structure, refined at 1.7 Å resolution, confirms that HirCel7A is a cellobiohydrolase rather than an endoglucanase, with a cellulose-binding tunnel that is more closed than Phanerochaete chrysosporium Cel7D and more open than Hypocrea jecorina Cel7A, suggesting intermediate enzyme properties. Molecular simulations were conducted to ascertain differences in enzyme-ligand interactions, ligand solvation, and loop flexibility between the family 7 glycoside hydrolase cellobiohydrolases from H. irregulare, H. jecorina, and P. chrysosporium. The structural comparisons and simulations suggest significant differences in enzyme-ligand interactions at the tunnel entrance in the -7 to -4 binding sites and suggest that a tyrosine residue at the tunnel entrance of HirCel7A may serve as an additional ligand-binding site. Additionally, the loops over the active site in H. jecorina Cel7A are more closed than loops in the other two enzymes, which has implications for the degree of processivity, endo-initiation, and substrate dissociation. Overall, this study highlights molecular level features important to understanding this biologically and industrially important family of glycoside hydrolases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23303184</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>04</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>288</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2013</Year>
<Month>Feb</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural, biochemical, and computational characterization of the glycoside hydrolase family 7 cellobiohydrolase of the tree-killing fungus Heterobasidion irregulare.</ArticleTitle>
<Pagination>
<MedlinePgn>5861-72</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M112.440891</ELocationID>
<Abstract>
<AbstractText>Root rot fungi of the Heterobasidion annosum complex are the most damaging pathogens in temperate forests, and the recently sequenced Heterobasidion irregulare genome revealed over 280 carbohydrate-active enzymes. Here, H. irregulare was grown on biomass, and the most abundant protein in the culture filtrate was identified as the only family 7 glycoside hydrolase in the genome, which consists of a single catalytic domain, lacking a linker and carbohydrate-binding module. The enzyme, HirCel7A, was characterized biochemically to determine the optimal conditions for activity. HirCel7A was crystallized and the structure, refined at 1.7 Å resolution, confirms that HirCel7A is a cellobiohydrolase rather than an endoglucanase, with a cellulose-binding tunnel that is more closed than Phanerochaete chrysosporium Cel7D and more open than Hypocrea jecorina Cel7A, suggesting intermediate enzyme properties. Molecular simulations were conducted to ascertain differences in enzyme-ligand interactions, ligand solvation, and loop flexibility between the family 7 glycoside hydrolase cellobiohydrolases from H. irregulare, H. jecorina, and P. chrysosporium. The structural comparisons and simulations suggest significant differences in enzyme-ligand interactions at the tunnel entrance in the -7 to -4 binding sites and suggest that a tyrosine residue at the tunnel entrance of HirCel7A may serve as an additional ligand-binding site. Additionally, the loops over the active site in H. jecorina Cel7A are more closed than loops in the other two enzymes, which has implications for the degree of processivity, endo-initiation, and substrate dissociation. Overall, this study highlights molecular level features important to understanding this biologically and industrially important family of glycoside hydrolases.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Momeni</LastName>
<ForeName>Majid Haddad</ForeName>
<Initials>MH</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology, Swedish University of Agricultural Sciences, SE-751 24 Uppsala, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Payne</LastName>
<ForeName>Christina M</ForeName>
<Initials>CM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hansson</LastName>
<ForeName>Henrik</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mikkelsen</LastName>
<ForeName>Nils Egil</ForeName>
<Initials>NE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Svedberg</LastName>
<ForeName>Jesper</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Engström</LastName>
<ForeName>Åke</ForeName>
<Initials>Å</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sandgren</LastName>
<ForeName>Mats</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Beckham</LastName>
<ForeName>Gregg T</ForeName>
<Initials>GT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ståhlberg</LastName>
<ForeName>Jerry</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>2XSP</AccessionNumber>
<AccessionNumber>2YG1</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>01</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D056804">Biofuels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008024">Ligands</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.-</RegistryNumber>
<NameOfSubstance UI="D006026">Glycoside Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.4</RegistryNumber>
<NameOfSubstance UI="D002480">Cellulase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.91</RegistryNumber>
<NameOfSubstance UI="D043366">Cellulose 1,4-beta-Cellobiosidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056804" MajorTopicYN="N">Biofuels</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002480" MajorTopicYN="N">Cellulase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043366" MajorTopicYN="N">Cellulose 1,4-beta-Cellobiosidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006026" MajorTopicYN="N">Glycoside Hydrolases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035901" MajorTopicYN="N">Hypocrea</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008024" MajorTopicYN="N">Ligands</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008968" MajorTopicYN="N">Molecular Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014242" MajorTopicYN="N">Trichoderma</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23303184</ArticleId>
<ArticleId IdType="pii">M112.440891</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M112.440891</ArticleId>
<ArticleId IdType="pmc">PMC3581431</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2012 Jan 27;287(5):3147-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22147693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2010 Aug 15;106(6):871-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20506147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Oct 19;287(43):36322-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22952223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 May 23;97(11):5842-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10823940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Chem Biomol Eng. 2011;2:121-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22432613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Jul 22;265(5171):524-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8036495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2008 Aug;17(8):1383-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18499583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jul 13;287(29):24807-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22648408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 9;315(5813):804-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17289988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 2004 Aug;14(8):713-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15070858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Jun;194(4):1001-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22463738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 1991 Jul;19(2-3):271-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1367241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Sep 2;333(6047):1279-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21885779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2011 Apr 14;115(14):4118-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21425804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 1996 Mar 1;68(5):850-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8779443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2009 Aug 6;113(31):10994-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19594145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2011 Oct 19;133(41):16617-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21877736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Dec 3;35(48):15280-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8952478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 May 20;286(20):18161-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21454590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2004 Jun 5;86(5):503-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15129433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Oct 31;333(4):817-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14568538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2012 Aug;95(4):979-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22718248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 May 25;287(22):18451-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22493488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1998 Oct 15;335 ( Pt 2):409-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9761741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1996 Nov 29;264(2):337-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8951380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5345-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20212162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(11):e48615</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23139804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1992 Apr 1;205(1):133-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1555575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Dec 14;314(5):1097-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2010 Dec 1;99(11):3773-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21112302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Aug 17;287(34):28802-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22733813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jun 8;287(24):20603-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22496371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D26-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Sep 26;272(3):383-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9325098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jan 7;286(1):169-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21051539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Apr;63(4):1298-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9097427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2006 Feb;273(3):491-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16420473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18089-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17116887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Jan 16;275(2):309-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9466911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Nov 25;286(47):41028-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21965672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Jan 10;51(1):442-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22103405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21460454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 1997 Dec;18(15):2714-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9504803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2011 Apr;22(2):231-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21168322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1998 Aug 15;256(1):119-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9746354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1993 May 7;1157(1):107-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8499476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18838391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2013 Jan;280(1):56-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23114223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2000 Apr;66(4):1444-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10742225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1998 Jun 16;429(3):341-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9662445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Dec 25;284(52):36186-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19858200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 Mar;10(3):227-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22266780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2012 Jul 02;5(1):45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22747961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2010 Jan 28;114(3):1447-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20050714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2005 Apr;272(8):1952-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15819888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2002 Sep;66(3):506-77, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12209002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2004 Nov;271(22):4495-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15560790</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Beckham, Gregg T" sort="Beckham, Gregg T" uniqKey="Beckham G" first="Gregg T" last="Beckham">Gregg T. Beckham</name>
<name sortKey="Engstrom, Ke" sort="Engstrom, Ke" uniqKey="Engstrom " first=" Ke" last="Engström"> Ke Engström</name>
<name sortKey="Hansson, Henrik" sort="Hansson, Henrik" uniqKey="Hansson H" first="Henrik" last="Hansson">Henrik Hansson</name>
<name sortKey="Mikkelsen, Nils Egil" sort="Mikkelsen, Nils Egil" uniqKey="Mikkelsen N" first="Nils Egil" last="Mikkelsen">Nils Egil Mikkelsen</name>
<name sortKey="Payne, Christina M" sort="Payne, Christina M" uniqKey="Payne C" first="Christina M" last="Payne">Christina M. Payne</name>
<name sortKey="Sandgren, Mats" sort="Sandgren, Mats" uniqKey="Sandgren M" first="Mats" last="Sandgren">Mats Sandgren</name>
<name sortKey="St Hlberg, Jerry" sort="St Hlberg, Jerry" uniqKey="St Hlberg J" first="Jerry" last="St Hlberg">Jerry St Hlberg</name>
<name sortKey="Svedberg, Jesper" sort="Svedberg, Jesper" uniqKey="Svedberg J" first="Jesper" last="Svedberg">Jesper Svedberg</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Momeni, Majid Haddad" sort="Momeni, Majid Haddad" uniqKey="Momeni M" first="Majid Haddad" last="Momeni">Majid Haddad Momeni</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000360 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000360 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23303184
   |texte=   Structural, biochemical, and computational characterization of the glycoside hydrolase family 7 cellobiohydrolase of the tree-killing fungus Heterobasidion irregulare.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23303184" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020