Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Active site and laminarin binding in glycoside hydrolase family 55.

Identifieur interne : 000284 ( Main/Exploration ); précédent : 000283; suivant : 000285

Active site and laminarin binding in glycoside hydrolase family 55.

Auteurs : Christopher M. Bianchetti [États-Unis] ; Taichi E. Takasuka [Japon] ; Sam Deutsch ; Hannah S. Udell [États-Unis] ; Eric J. Yik [États-Unis] ; Lai F. Bergeman [États-Unis] ; Brian G. Fox [États-Unis]

Source :

RBID : pubmed:25752603

Descripteurs français

English descriptors

Abstract

The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100-10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties.

DOI: 10.1074/jbc.M114.623579
PubMed: 25752603
PubMed Central: PMC4424323


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Active site and laminarin binding in glycoside hydrolase family 55.</title>
<author>
<name sortKey="Bianchetti, Christopher M" sort="Bianchetti, Christopher M" uniqKey="Bianchetti C" first="Christopher M" last="Bianchetti">Christopher M. Bianchetti</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, the Department of Chemistry, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin 54901.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, the Department of Chemistry, University of Wisconsin-Oshkosh, Oshkosh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Takasuka, Taichi E" sort="Takasuka, Taichi E" uniqKey="Takasuka T" first="Taichi E" last="Takasuka">Taichi E. Takasuka</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, the Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, the Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589</wicri:regionArea>
<wicri:noRegion>060-8589</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Deutsch, Sam" sort="Deutsch, Sam" uniqKey="Deutsch S" first="Sam" last="Deutsch">Sam Deutsch</name>
<affiliation>
<nlm:affiliation>the Joint Genome Institute, Walnut Creek, California 94598, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Udell, Hannah S" sort="Udell, Hannah S" uniqKey="Udell H" first="Hannah S" last="Udell">Hannah S. Udell</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Yik, Eric J" sort="Yik, Eric J" uniqKey="Yik E" first="Eric J" last="Yik">Eric J. Yik</name>
<affiliation wicri:level="2">
<nlm:affiliation>the Department of Chemistry and Biochemistry, California State University-Fullerton, Fullerton, California 92831.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>the Department of Chemistry and Biochemistry, California State University-Fullerton, Fullerton</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bergeman, Lai F" sort="Bergeman, Lai F" uniqKey="Bergeman L" first="Lai F" last="Bergeman">Lai F. Bergeman</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Fox, Brian G" sort="Fox, Brian G" uniqKey="Fox B" first="Brian G" last="Fox">Brian G. Fox</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, bgfox@biochem.wisc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706</wicri:regionArea>
<wicri:noRegion>Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25752603</idno>
<idno type="pmid">25752603</idno>
<idno type="doi">10.1074/jbc.M114.623579</idno>
<idno type="pmc">PMC4424323</idno>
<idno type="wicri:Area/Main/Corpus">000260</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000260</idno>
<idno type="wicri:Area/Main/Curation">000260</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000260</idno>
<idno type="wicri:Area/Main/Exploration">000260</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Active site and laminarin binding in glycoside hydrolase family 55.</title>
<author>
<name sortKey="Bianchetti, Christopher M" sort="Bianchetti, Christopher M" uniqKey="Bianchetti C" first="Christopher M" last="Bianchetti">Christopher M. Bianchetti</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, the Department of Chemistry, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin 54901.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, the Department of Chemistry, University of Wisconsin-Oshkosh, Oshkosh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Takasuka, Taichi E" sort="Takasuka, Taichi E" uniqKey="Takasuka T" first="Taichi E" last="Takasuka">Taichi E. Takasuka</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, the Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, the Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589</wicri:regionArea>
<wicri:noRegion>060-8589</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Deutsch, Sam" sort="Deutsch, Sam" uniqKey="Deutsch S" first="Sam" last="Deutsch">Sam Deutsch</name>
<affiliation>
<nlm:affiliation>the Joint Genome Institute, Walnut Creek, California 94598, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Udell, Hannah S" sort="Udell, Hannah S" uniqKey="Udell H" first="Hannah S" last="Udell">Hannah S. Udell</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Yik, Eric J" sort="Yik, Eric J" uniqKey="Yik E" first="Eric J" last="Yik">Eric J. Yik</name>
<affiliation wicri:level="2">
<nlm:affiliation>the Department of Chemistry and Biochemistry, California State University-Fullerton, Fullerton, California 92831.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>the Department of Chemistry and Biochemistry, California State University-Fullerton, Fullerton</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bergeman, Lai F" sort="Bergeman, Lai F" uniqKey="Bergeman L" first="Lai F" last="Bergeman">Lai F. Bergeman</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Fox, Brian G" sort="Fox, Brian G" uniqKey="Fox B" first="Brian G" last="Fox">Brian G. Fox</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, bgfox@biochem.wisc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706</wicri:regionArea>
<wicri:noRegion>Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (chemistry)</term>
<term>Catalysis (MeSH)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Computational Biology (MeSH)</term>
<term>Crystallography, X-Ray (MeSH)</term>
<term>Escherichia coli (metabolism)</term>
<term>Glucans (chemistry)</term>
<term>Glycoside Hydrolases (chemistry)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Hydrolysis (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Mutagenesis (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phanerochaete (enzymology)</term>
<term>Phylogeny (MeSH)</term>
<term>Polysaccharides (chemistry)</term>
<term>Protein Binding (MeSH)</term>
<term>Streptomyces (enzymology)</term>
<term>Water (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biologie informatique (MeSH)</term>
<term>Catalyse (MeSH)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Cristallographie aux rayons X (MeSH)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Eau (composition chimique)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Glucanes (composition chimique)</term>
<term>Glycosidases (composition chimique)</term>
<term>Hydrolyse (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Mutagenèse (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phanerochaete (enzymologie)</term>
<term>Phylogenèse (MeSH)</term>
<term>Polyosides (composition chimique)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Streptomyces (enzymologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Glucans</term>
<term>Glycoside Hydrolases</term>
<term>Polysaccharides</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Eau</term>
<term>Glucanes</term>
<term>Glycosidases</term>
<term>Polyosides</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Phanerochaete</term>
<term>Streptomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Phanerochaete</term>
<term>Streptomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalysis</term>
<term>Catalytic Domain</term>
<term>Computational Biology</term>
<term>Crystallography, X-Ray</term>
<term>Hydrogen-Ion Concentration</term>
<term>Hydrolysis</term>
<term>Models, Molecular</term>
<term>Mutagenesis</term>
<term>Mutation</term>
<term>Phylogeny</term>
<term>Protein Binding</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biologie informatique</term>
<term>Catalyse</term>
<term>Concentration en ions d'hydrogène</term>
<term>Cristallographie aux rayons X</term>
<term>Domaine catalytique</term>
<term>Hydrolyse</term>
<term>Liaison aux protéines</term>
<term>Modèles moléculaires</term>
<term>Mutagenèse</term>
<term>Mutation</term>
<term>Phylogenèse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100-10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25752603</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>08</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>290</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2015</Year>
<Month>May</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Active site and laminarin binding in glycoside hydrolase family 55.</ArticleTitle>
<Pagination>
<MedlinePgn>11819-32</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M114.623579</ELocationID>
<Abstract>
<AbstractText>The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100-10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. </AbstractText>
<CopyrightInformation>© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bianchetti</LastName>
<ForeName>Christopher M</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, the Department of Chemistry, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin 54901.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Takasuka</LastName>
<ForeName>Taichi E</ForeName>
<Initials>TE</Initials>
<AffiliationInfo>
<Affiliation>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, the Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Deutsch</LastName>
<ForeName>Sam</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>the Joint Genome Institute, Walnut Creek, California 94598, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Udell</LastName>
<ForeName>Hannah S</ForeName>
<Initials>HS</Initials>
<AffiliationInfo>
<Affiliation>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yik</LastName>
<ForeName>Eric J</ForeName>
<Initials>EJ</Initials>
<AffiliationInfo>
<Affiliation>the Department of Chemistry and Biochemistry, California State University-Fullerton, Fullerton, California 92831.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bergeman</LastName>
<ForeName>Lai F</ForeName>
<Initials>LF</Initials>
<AffiliationInfo>
<Affiliation>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fox</LastName>
<ForeName>Brian G</ForeName>
<Initials>BG</Initials>
<AffiliationInfo>
<Affiliation>From the Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, bgfox@biochem.wisc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>4PEW</AccessionNumber>
<AccessionNumber>4PEX</AccessionNumber>
<AccessionNumber>4PEY</AccessionNumber>
<AccessionNumber>4PEZ</AccessionNumber>
<AccessionNumber>4PF0</AccessionNumber>
<AccessionNumber>4TYV</AccessionNumber>
<AccessionNumber>4TZ1</AccessionNumber>
<AccessionNumber>4TZ3</AccessionNumber>
<AccessionNumber>4TZ5</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>03</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005936">Glucans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011134">Polysaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9008-22-4</RegistryNumber>
<NameOfSubstance UI="C008247">laminaran</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.-</RegistryNumber>
<NameOfSubstance UI="D006026">Glycoside Hydrolases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005936" MajorTopicYN="N">Glucans</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006026" MajorTopicYN="N">Glycoside Hydrolases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016296" MajorTopicYN="N">Mutagenesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011134" MajorTopicYN="N">Polysaccharides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013302" MajorTopicYN="N">Streptomyces</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cell-free Translation</Keyword>
<Keyword MajorTopicYN="N">Exo-glucanase</Keyword>
<Keyword MajorTopicYN="N">GH55</Keyword>
<Keyword MajorTopicYN="N">Genomics</Keyword>
<Keyword MajorTopicYN="N">Glycoside Hydrolase</Keyword>
<Keyword MajorTopicYN="N">Hydrolase</Keyword>
<Keyword MajorTopicYN="N">Proteomics</Keyword>
<Keyword MajorTopicYN="N">X-ray Crystallography</Keyword>
<Keyword MajorTopicYN="N">β-1,3-Glucanase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>11</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25752603</ArticleId>
<ArticleId IdType="pii">M114.623579</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M114.623579</ArticleId>
<ArticleId IdType="pmc">PMC4424323</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Chem Biol. 2000 Oct;4(5):573-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11006547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Feb;67(2):865-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11157256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2001 Oct 17;277(1-2):199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11602357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Biophys Mol Biol. 2001 Oct;77(2):111-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11747907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2002 Mar;40(6):374-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11919676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2002 Aug 28;124(34):10015-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12188666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3784-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2003 Jun;67(6):1349-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12843664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2003 Nov;59(Pt 11):1966-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14573951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2004 Sep 15;382(Pt 3):769-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15214846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2004 Oct;68(10):2111-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15502357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2006 Mar;28(6):365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16614901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2007 Jul 1;17(13):3702-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17475486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2007 May-Jun;23(3):585-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17506520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2007 Sep;55(1):53-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17543538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2007 Jun;71(6):1568-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17587693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Sep 21;372(3):774-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Jun 10;220(4602):1161-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17818500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Oct 19;373(2):337-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17822716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2007 Sep;15(9):1040-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17850744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Oct;66(2):279-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17854405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2008 May 1;71(2):982-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18004753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 22;450(7169):560-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18033299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18045787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2008 Jan;64(Pt 1):61-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18094468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18838391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Dec 26;283(52):36328-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18981178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;498:55-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18988018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Apr 10;284(15):10100-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19193645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2009 Feb;59(Pt 2):275-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19196765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Apr 17;284(16):10610-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19244232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Protein Sci. 2009 Apr;Chapter 5:Unit 5.23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19365792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2009 Jun;65(Pt 6):582-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19465773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2009 Jul;276(14):3837-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19523117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Sep 25;284(39):26708-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19640850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2009 Jun;4(6):489-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19816126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20057044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 May;38(8):2603-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20211837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2010 Oct 1;107(2):195-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20552664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2011 Aug;5(8):1323-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21368904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2011;498:349-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21601685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Sep 29;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Nov 25;286(47):41028-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21965672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Sep;6(9):1688-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22378535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2012 Dec 18;1:e00311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23251785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2013 Jan;69(Pt 1):52-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23275163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2013;3:1030</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23301151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 May 10;288(19):13503-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23532843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2013 May 2;117(17):4924-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23534900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jun 21;288(25):18574-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23653358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 2014 Jan;67(1):53-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23921819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2014;1079:105-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24170397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jan 24;289(4):2027-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24337571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2014;1118:71-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24395410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Apr 07;9(4):e94166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24710170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Aug;80(15):4692-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24837391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol Rep. 2014 Aug;6(4):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24992538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 Aug 06;7:109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25161697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Sep 16;5:470</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25278948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014 Nov 18;5(6):e02077</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25406380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Dec;177(23):6937-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7592488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 1994 Dec;4(6):885-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7712292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Feb 21;34(7):2220-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7857933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Feb;60(2):594-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8135518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 1996 Feb 23;281(2):187-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8721145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1997 Jan 15;321 ( Pt 2):557-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9020895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1999 Jan 21;226(2):147-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9931476</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Wisconsin</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Deutsch, Sam" sort="Deutsch, Sam" uniqKey="Deutsch S" first="Sam" last="Deutsch">Sam Deutsch</name>
</noCountry>
<country name="États-Unis">
<region name="Wisconsin">
<name sortKey="Bianchetti, Christopher M" sort="Bianchetti, Christopher M" uniqKey="Bianchetti C" first="Christopher M" last="Bianchetti">Christopher M. Bianchetti</name>
</region>
<name sortKey="Bergeman, Lai F" sort="Bergeman, Lai F" uniqKey="Bergeman L" first="Lai F" last="Bergeman">Lai F. Bergeman</name>
<name sortKey="Fox, Brian G" sort="Fox, Brian G" uniqKey="Fox B" first="Brian G" last="Fox">Brian G. Fox</name>
<name sortKey="Udell, Hannah S" sort="Udell, Hannah S" uniqKey="Udell H" first="Hannah S" last="Udell">Hannah S. Udell</name>
<name sortKey="Yik, Eric J" sort="Yik, Eric J" uniqKey="Yik E" first="Eric J" last="Yik">Eric J. Yik</name>
</country>
<country name="Japon">
<noRegion>
<name sortKey="Takasuka, Taichi E" sort="Takasuka, Taichi E" uniqKey="Takasuka T" first="Taichi E" last="Takasuka">Taichi E. Takasuka</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000284 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000284 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25752603
   |texte=   Active site and laminarin binding in glycoside hydrolase family 55.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25752603" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020