Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

[Bioinorganic Chemistry of Iron].

Identifieur interne : 000093 ( Main/Exploration ); précédent : 000092; suivant : 000094

[Bioinorganic Chemistry of Iron].

Auteurs : Yoshiki Mino

Source :

RBID : pubmed:29503431

Descripteurs français

English descriptors

Abstract

 The X-ray crystallographic analysis of the single-crystal mugineic acid-Cu(II) complex showed that mugineic acid acts as a hexadentate ligand. Mugineic acid, a typical phytosiderophore, shows a marked stimulating effect on 59Fe-uptake and chlorophyll synthesis in rice plants. A salient feature is the higher reduction potential of the mugineic acid-Fe(III) complex than those of bacterial siderophores. X-ray diffraction study of the structurally analogous Co(III) complex of the mugineic acid-Fe(III) complex demonstrates that the azetidine nitrogen and secondary amine nitrogen, and both terminal carboxylate oxygens, coordinate as basal planar donors, and the hydroxyl oxygen and intermediate carboxylate oxygen bind as axial donors in a nearly octahedral configuration. The iron-transport mechanism in gramineous plants appears to involve the excretion of mugineic acid from the roots, which aids Fe(III)-solubilization and reduction of Fe(III) to Fe(II). Manganese peroxidase (MnP) is a component of the lignin degradation system of the basidiomycetous fungus, Phanerochaete chrysosporium. To elucidate the heme environment of this novel Mn(II)-dependent extracellular enzyme, we studied its ESR and resonance Raman spectroscopic properties. Consequently, it is most likely that the heme environment of MnP resembles that of cytochrome c peroxidase. In addition, degradation methods using basidiomycetous fungi or Fe3+-H2O2 mixed reagent were developed for dioxins and polychlorinated biphenyls. The complete amino acid sequences of respective [2Fe-2S] ferredoxins were determined and compared with those of other higher plants. Finally, the toxic effects of iron on human health and the development of novel antibacterial drugs capable of inhibiting the iron transport system of Vibrio vulnificus are described.

DOI: 10.1248/yakushi.17-00154
PubMed: 29503431


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">[Bioinorganic Chemistry of Iron].</title>
<author>
<name sortKey="Mino, Yoshiki" sort="Mino, Yoshiki" uniqKey="Mino Y" first="Yoshiki" last="Mino">Yoshiki Mino</name>
<affiliation>
<nlm:affiliation>Osaka University of Pharmaceutical Sciences.</nlm:affiliation>
<wicri:noCountry code="no comma">Osaka University of Pharmaceutical Sciences.</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29503431</idno>
<idno type="pmid">29503431</idno>
<idno type="doi">10.1248/yakushi.17-00154</idno>
<idno type="wicri:Area/Main/Corpus">000122</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000122</idno>
<idno type="wicri:Area/Main/Curation">000122</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000122</idno>
<idno type="wicri:Area/Main/Exploration">000122</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">[Bioinorganic Chemistry of Iron].</title>
<author>
<name sortKey="Mino, Yoshiki" sort="Mino, Yoshiki" uniqKey="Mino Y" first="Yoshiki" last="Mino">Yoshiki Mino</name>
<affiliation>
<nlm:affiliation>Osaka University of Pharmaceutical Sciences.</nlm:affiliation>
<wicri:noCountry code="no comma">Osaka University of Pharmaceutical Sciences.</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan</title>
<idno type="eISSN">1347-5231</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Azetidinecarboxylic Acid (analogs & derivatives)</term>
<term>Azetidinecarboxylic Acid (chemistry)</term>
<term>Azetidinecarboxylic Acid (metabolism)</term>
<term>Chlorophyll (biosynthesis)</term>
<term>Coordination Complexes (chemistry)</term>
<term>Coordination Complexes (metabolism)</term>
<term>Crystallography, X-Ray (MeSH)</term>
<term>Female (MeSH)</term>
<term>Ferredoxins (chemistry)</term>
<term>Humans (MeSH)</term>
<term>Iron (chemistry)</term>
<term>Iron (metabolism)</term>
<term>Iron (toxicity)</term>
<term>Male (MeSH)</term>
<term>Peroxidases (MeSH)</term>
<term>Plants (metabolism)</term>
<term>Siderophores (MeSH)</term>
<term>Spectrum Analysis, Raman (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide azétidine-2-carboxylique (analogues et dérivés)</term>
<term>Acide azétidine-2-carboxylique (composition chimique)</term>
<term>Acide azétidine-2-carboxylique (métabolisme)</term>
<term>Analyse spectrale Raman (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Chlorophylle (biosynthèse)</term>
<term>Complexes de coordination (composition chimique)</term>
<term>Complexes de coordination (métabolisme)</term>
<term>Cristallographie aux rayons X (MeSH)</term>
<term>Femelle (MeSH)</term>
<term>Fer (composition chimique)</term>
<term>Fer (métabolisme)</term>
<term>Fer (toxicité)</term>
<term>Ferrédoxines (composition chimique)</term>
<term>Humains (MeSH)</term>
<term>Mâle (MeSH)</term>
<term>Peroxidases (MeSH)</term>
<term>Plantes (métabolisme)</term>
<term>Sidérophores (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Azetidinecarboxylic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Chlorophyll</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Azetidinecarboxylic Acid</term>
<term>Coordination Complexes</term>
<term>Ferredoxins</term>
<term>Iron</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Azetidinecarboxylic Acid</term>
<term>Coordination Complexes</term>
<term>Iron</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Iron</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Acide azétidine-2-carboxylique</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Chlorophylle</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Acide azétidine-2-carboxylique</term>
<term>Complexes de coordination</term>
<term>Fer</term>
<term>Ferrédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide azétidine-2-carboxylique</term>
<term>Complexes de coordination</term>
<term>Fer</term>
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Fer</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Crystallography, X-Ray</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Peroxidases</term>
<term>Siderophores</term>
<term>Spectrum Analysis, Raman</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse spectrale Raman</term>
<term>Animaux</term>
<term>Cristallographie aux rayons X</term>
<term>Femelle</term>
<term>Humains</term>
<term>Mâle</term>
<term>Peroxidases</term>
<term>Sidérophores</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en"> The X-ray crystallographic analysis of the single-crystal mugineic acid-Cu(II) complex showed that mugineic acid acts as a hexadentate ligand. Mugineic acid, a typical phytosiderophore, shows a marked stimulating effect on
<sup>59</sup>
Fe-uptake and chlorophyll synthesis in rice plants. A salient feature is the higher reduction potential of the mugineic acid-Fe(III) complex than those of bacterial siderophores. X-ray diffraction study of the structurally analogous Co(III) complex of the mugineic acid-Fe(III) complex demonstrates that the azetidine nitrogen and secondary amine nitrogen, and both terminal carboxylate oxygens, coordinate as basal planar donors, and the hydroxyl oxygen and intermediate carboxylate oxygen bind as axial donors in a nearly octahedral configuration. The iron-transport mechanism in gramineous plants appears to involve the excretion of mugineic acid from the roots, which aids Fe(III)-solubilization and reduction of Fe(III) to Fe(II). Manganese peroxidase (MnP) is a component of the lignin degradation system of the basidiomycetous fungus, Phanerochaete chrysosporium. To elucidate the heme environment of this novel Mn(II)-dependent extracellular enzyme, we studied its ESR and resonance Raman spectroscopic properties. Consequently, it is most likely that the heme environment of MnP resembles that of cytochrome c peroxidase. In addition, degradation methods using basidiomycetous fungi or Fe
<sup>3+</sup>
-H
<sub>2</sub>
O
<sub>2</sub>
mixed reagent were developed for dioxins and polychlorinated biphenyls. The complete amino acid sequences of respective [2Fe-2S] ferredoxins were determined and compared with those of other higher plants. Finally, the toxic effects of iron on human health and the development of novel antibacterial drugs capable of inhibiting the iron transport system of Vibrio vulnificus are described.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29503431</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>03</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1347-5231</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>138</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan</Title>
<ISOAbbreviation>Yakugaku Zasshi</ISOAbbreviation>
</Journal>
<ArticleTitle>[Bioinorganic Chemistry of Iron].</ArticleTitle>
<Pagination>
<MedlinePgn>373-387</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1248/yakushi.17-00154</ELocationID>
<Abstract>
<AbstractText> The X-ray crystallographic analysis of the single-crystal mugineic acid-Cu(II) complex showed that mugineic acid acts as a hexadentate ligand. Mugineic acid, a typical phytosiderophore, shows a marked stimulating effect on
<sup>59</sup>
Fe-uptake and chlorophyll synthesis in rice plants. A salient feature is the higher reduction potential of the mugineic acid-Fe(III) complex than those of bacterial siderophores. X-ray diffraction study of the structurally analogous Co(III) complex of the mugineic acid-Fe(III) complex demonstrates that the azetidine nitrogen and secondary amine nitrogen, and both terminal carboxylate oxygens, coordinate as basal planar donors, and the hydroxyl oxygen and intermediate carboxylate oxygen bind as axial donors in a nearly octahedral configuration. The iron-transport mechanism in gramineous plants appears to involve the excretion of mugineic acid from the roots, which aids Fe(III)-solubilization and reduction of Fe(III) to Fe(II). Manganese peroxidase (MnP) is a component of the lignin degradation system of the basidiomycetous fungus, Phanerochaete chrysosporium. To elucidate the heme environment of this novel Mn(II)-dependent extracellular enzyme, we studied its ESR and resonance Raman spectroscopic properties. Consequently, it is most likely that the heme environment of MnP resembles that of cytochrome c peroxidase. In addition, degradation methods using basidiomycetous fungi or Fe
<sup>3+</sup>
-H
<sub>2</sub>
O
<sub>2</sub>
mixed reagent were developed for dioxins and polychlorinated biphenyls. The complete amino acid sequences of respective [2Fe-2S] ferredoxins were determined and compared with those of other higher plants. Finally, the toxic effects of iron on human health and the development of novel antibacterial drugs capable of inhibiting the iron transport system of Vibrio vulnificus are described.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mino</LastName>
<ForeName>Yoshiki</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Osaka University of Pharmaceutical Sciences.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>jpn</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Japan</Country>
<MedlineTA>Yakugaku Zasshi</MedlineTA>
<NlmUniqueID>0413613</NlmUniqueID>
<ISSNLinking>0031-6903</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D056831">Coordination Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005288">Ferredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017262">Siderophores</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>5GZ3E0L9ZU</RegistryNumber>
<NameOfSubstance UI="D001383">Azetidinecarboxylic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.13</RegistryNumber>
<NameOfSubstance UI="C051129">manganese peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>KR256JY76I</RegistryNumber>
<NameOfSubstance UI="C052863">mugineic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001383" MajorTopicYN="N">Azetidinecarboxylic Acid</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056831" MajorTopicYN="N">Coordination Complexes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005288" MajorTopicYN="N">Ferredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017262" MajorTopicYN="N">Siderophores</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013059" MajorTopicYN="N">Spectrum Analysis, Raman</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">amino acid sequence</Keyword>
<Keyword MajorTopicYN="N">ferredoxin</Keyword>
<Keyword MajorTopicYN="N">manganese peroxidase</Keyword>
<Keyword MajorTopicYN="N">mugineic acid</Keyword>
<Keyword MajorTopicYN="N">resonance Raman spectroscopy</Keyword>
<Keyword MajorTopicYN="N">siderophore</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>3</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>3</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29503431</ArticleId>
<ArticleId IdType="doi">10.1248/yakushi.17-00154</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Mino, Yoshiki" sort="Mino, Yoshiki" uniqKey="Mino Y" first="Yoshiki" last="Mino">Yoshiki Mino</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000093 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000093 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29503431
   |texte=   [Bioinorganic Chemistry of Iron].
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29503431" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020