Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mn(II) Regulation of Lignin Peroxidases and Manganese-Dependent Peroxidases from Lignin-Degrading White Rot Fungi.

Identifieur interne : 000F73 ( Main/Curation ); précédent : 000F72; suivant : 000F74

Mn(II) Regulation of Lignin Peroxidases and Manganese-Dependent Peroxidases from Lignin-Degrading White Rot Fungi.

Auteurs : P. Bonnarme [États-Unis] ; T W Jeffries

Source :

RBID : pubmed:16348093

Abstract

Two families of peroxidases-lignin peroxidase (LiP) and manganese-dependent lignin peroxidase (MnP)-are formed by the lignin-degrading white rot basidiomycete Phanerochaete chrysosporium and other white rot fungi. Isoenzymes of these enzyme families carry out reactions important to the biodegradation of lignin. This research investigated the regulation of LiP and MnP production by Mn(II). In liquid culture, LiP titers varied as an inverse function of and MnP titers varied as a direct function of the Mn(II) concentration. The extracellular isoenzyme profiles differed radically at low and high Mn(II) levels, whereas other fermentation parameters, including extracellular protein concentrations, the glucose consumption rate, and the accumulation of cell dry weight, did not change significantly with the Mn(II) concentration. In the absence of Mn(II), extracellular LiP isoenzymes predominated, whereas in the presence of Mn(II), MnP isoenzymes were dominant. The release of CO(2) from C-labeled dehydrogenative polymerizate lignin was likewise affected by Mn(II). The rate of CO(2) release increased at low Mn(II) and decreased at high Mn(II) concentrations. This regulatory effect of Mn(II) occurred with five strains of P. chrysosporium, two other species of Phanerochaete, three species of Phlebia, Lentinula edodes, and Phellinus pini.

DOI: 10.1128/AEM.56.1.210-217.1990
PubMed: 16348093
PubMed Central: PMC183274

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:16348093

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mn(II) Regulation of Lignin Peroxidases and Manganese-Dependent Peroxidases from Lignin-Degrading White Rot Fungi.</title>
<author>
<name sortKey="Bonnarme, P" sort="Bonnarme, P" uniqKey="Bonnarme P" first="P" last="Bonnarme">P. Bonnarme</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute for Microbial and Biochemical Technology, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, Wisconsin 53705.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>Institute for Microbial and Biochemical Technology, Forest Products Laboratory, One Gifford Pinchot Drive, Madison</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Jeffries, T W" sort="Jeffries, T W" uniqKey="Jeffries T" first="T W" last="Jeffries">T W Jeffries</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1990">1990</date>
<idno type="RBID">pubmed:16348093</idno>
<idno type="pmid">16348093</idno>
<idno type="pmc">PMC183274</idno>
<idno type="doi">10.1128/AEM.56.1.210-217.1990</idno>
<idno type="wicri:Area/Main/Corpus">000F73</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F73</idno>
<idno type="wicri:Area/Main/Curation">000F73</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F73</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mn(II) Regulation of Lignin Peroxidases and Manganese-Dependent Peroxidases from Lignin-Degrading White Rot Fungi.</title>
<author>
<name sortKey="Bonnarme, P" sort="Bonnarme, P" uniqKey="Bonnarme P" first="P" last="Bonnarme">P. Bonnarme</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute for Microbial and Biochemical Technology, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, Wisconsin 53705.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>Institute for Microbial and Biochemical Technology, Forest Products Laboratory, One Gifford Pinchot Drive, Madison</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Jeffries, T W" sort="Jeffries, T W" uniqKey="Jeffries T" first="T W" last="Jeffries">T W Jeffries</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="ISSN">0099-2240</idno>
<imprint>
<date when="1990" type="published">1990</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Two families of peroxidases-lignin peroxidase (LiP) and manganese-dependent lignin peroxidase (MnP)-are formed by the lignin-degrading white rot basidiomycete Phanerochaete chrysosporium and other white rot fungi. Isoenzymes of these enzyme families carry out reactions important to the biodegradation of lignin. This research investigated the regulation of LiP and MnP production by Mn(II). In liquid culture, LiP titers varied as an inverse function of and MnP titers varied as a direct function of the Mn(II) concentration. The extracellular isoenzyme profiles differed radically at low and high Mn(II) levels, whereas other fermentation parameters, including extracellular protein concentrations, the glucose consumption rate, and the accumulation of cell dry weight, did not change significantly with the Mn(II) concentration. In the absence of Mn(II), extracellular LiP isoenzymes predominated, whereas in the presence of Mn(II), MnP isoenzymes were dominant. The release of CO(2) from C-labeled dehydrogenative polymerizate lignin was likewise affected by Mn(II). The rate of CO(2) release increased at low Mn(II) and decreased at high Mn(II) concentrations. This regulatory effect of Mn(II) occurred with five strains of P. chrysosporium, two other species of Phanerochaete, three species of Phlebia, Lentinula edodes, and Phellinus pini.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">16348093</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>06</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0099-2240</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>56</Volume>
<Issue>1</Issue>
<PubDate>
<Year>1990</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Mn(II) Regulation of Lignin Peroxidases and Manganese-Dependent Peroxidases from Lignin-Degrading White Rot Fungi.</ArticleTitle>
<Pagination>
<MedlinePgn>210-7</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Two families of peroxidases-lignin peroxidase (LiP) and manganese-dependent lignin peroxidase (MnP)-are formed by the lignin-degrading white rot basidiomycete Phanerochaete chrysosporium and other white rot fungi. Isoenzymes of these enzyme families carry out reactions important to the biodegradation of lignin. This research investigated the regulation of LiP and MnP production by Mn(II). In liquid culture, LiP titers varied as an inverse function of and MnP titers varied as a direct function of the Mn(II) concentration. The extracellular isoenzyme profiles differed radically at low and high Mn(II) levels, whereas other fermentation parameters, including extracellular protein concentrations, the glucose consumption rate, and the accumulation of cell dry weight, did not change significantly with the Mn(II) concentration. In the absence of Mn(II), extracellular LiP isoenzymes predominated, whereas in the presence of Mn(II), MnP isoenzymes were dominant. The release of CO(2) from C-labeled dehydrogenative polymerizate lignin was likewise affected by Mn(II). The rate of CO(2) release increased at low Mn(II) and decreased at high Mn(II) concentrations. This regulatory effect of Mn(II) occurred with five strains of P. chrysosporium, two other species of Phanerochaete, three species of Phlebia, Lentinula edodes, and Phellinus pini.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bonnarme</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Institute for Microbial and Biochemical Technology, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, Wisconsin 53705.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jeffries</LastName>
<ForeName>T W</ForeName>
<Initials>TW</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1990</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1990</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1990</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16348093</ArticleId>
<ArticleId IdType="pmc">PMC183274</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.56.1.210-217.1990</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1975 Jul;72(7):2515-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1058470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 Mar 10;260(5):2609-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2982828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 May 25;260(10):6080-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2987213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1986 Feb 5;261(4):1687-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3003081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1986 Feb 1;244(2):750-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3080953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1988 Sep 15;254(3):877-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3196301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1987 May;169(5):2195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3553159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1980 Mar;39(3):535-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16345527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1983 Mar;45(3):830-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16346246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1985 Nov;50(5):1274-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16346932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Aug 12;221(4611):661-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17787736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1978 Sep;135(3):790-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">690075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 Jul 15;260(14):8348-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2989288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1986 May 15;236(1):279-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3024619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1988 Dec 30;157(3):992-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3207431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1983 Aug 12;114(3):1077-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6615503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1981 Aug;42(2):290-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16345829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Apr;81(8):2280-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593451</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F73 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000F73 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:16348093
   |texte=   Mn(II) Regulation of Lignin Peroxidases and Manganese-Dependent Peroxidases from Lignin-Degrading White Rot Fungi.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:16348093" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020