Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lignocellulose Degradation during Solid-State Fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium.

Identifieur interne : 000E83 ( Main/Curation ); précédent : 000E82; suivant : 000E84

Lignocellulose Degradation during Solid-State Fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium.

Auteurs : Z. Kerem [Israël] ; D. Friesem ; Y. Hadar

Source :

RBID : pubmed:16348683

Abstract

Lignocellulose degradation and activities related to lignin degradation were studied in the solid-state fermentation of cotton stalks by comparing two white rot fungi, Pleurotus ostreatus and Phanerochaete chrysosporium. P. chrysosporium grew vigorously, resulting in rapid, nonselective degradation of 55% of the organic components of the cotton stalks within 15 days. In contrast, P. ostreatus grew more slowly with obvious selectivity for lignin degradation and resulting in the degradation of only 20% of the organic matter after 30 days of incubation. The kinetics of C-lignin mineralization exhibited similar differences. In cultures of P. chrysosporium, mineralization ceased after 18 days, resulting in the release of 12% of the total radioactivity as CO(2). In P. ostreatus, on the other hand, 17% of the total radioactivity was released in a steady rate throughout a period of 60 days of incubation. Laccase activity was only detected in water extracts of the P. ostreatus fermentation. No lignin peroxidase activity was detected in either the water extract or liquid cultures of this fungus. 2-Keto-4-thiomethyl butyric acid cleavage to ethylene correlated to lignin degradation in both fungi. A study of fungal activity under solid-state conditions, in contrast to those done under defined liquid culture, may help to better understand the mechanisms involved in lignocellulose degradation.

DOI: 10.1128/AEM.58.4.1121-1127.1992
PubMed: 16348683
PubMed Central: PMC195564

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:16348683

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lignocellulose Degradation during Solid-State Fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Kerem, Z" sort="Kerem, Z" uniqKey="Kerem Z" first="Z" last="Kerem">Z. Kerem</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Otto Warburg Center for Biotechnology in Agriculture, Faculty of Agriculture, The Hebrew University, Rehovot 76-100, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The Otto Warburg Center for Biotechnology in Agriculture, Faculty of Agriculture, The Hebrew University, Rehovot 76-100</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Friesem, D" sort="Friesem, D" uniqKey="Friesem D" first="D" last="Friesem">D. Friesem</name>
</author>
<author>
<name sortKey="Hadar, Y" sort="Hadar, Y" uniqKey="Hadar Y" first="Y" last="Hadar">Y. Hadar</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1992">1992</date>
<idno type="RBID">pubmed:16348683</idno>
<idno type="pmid">16348683</idno>
<idno type="pmc">PMC195564</idno>
<idno type="doi">10.1128/AEM.58.4.1121-1127.1992</idno>
<idno type="wicri:Area/Main/Corpus">000E83</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E83</idno>
<idno type="wicri:Area/Main/Curation">000E83</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000E83</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lignocellulose Degradation during Solid-State Fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Kerem, Z" sort="Kerem, Z" uniqKey="Kerem Z" first="Z" last="Kerem">Z. Kerem</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Otto Warburg Center for Biotechnology in Agriculture, Faculty of Agriculture, The Hebrew University, Rehovot 76-100, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The Otto Warburg Center for Biotechnology in Agriculture, Faculty of Agriculture, The Hebrew University, Rehovot 76-100</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Friesem, D" sort="Friesem, D" uniqKey="Friesem D" first="D" last="Friesem">D. Friesem</name>
</author>
<author>
<name sortKey="Hadar, Y" sort="Hadar, Y" uniqKey="Hadar Y" first="Y" last="Hadar">Y. Hadar</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="ISSN">0099-2240</idno>
<imprint>
<date when="1992" type="published">1992</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lignocellulose degradation and activities related to lignin degradation were studied in the solid-state fermentation of cotton stalks by comparing two white rot fungi, Pleurotus ostreatus and Phanerochaete chrysosporium. P. chrysosporium grew vigorously, resulting in rapid, nonselective degradation of 55% of the organic components of the cotton stalks within 15 days. In contrast, P. ostreatus grew more slowly with obvious selectivity for lignin degradation and resulting in the degradation of only 20% of the organic matter after 30 days of incubation. The kinetics of C-lignin mineralization exhibited similar differences. In cultures of P. chrysosporium, mineralization ceased after 18 days, resulting in the release of 12% of the total radioactivity as CO(2). In P. ostreatus, on the other hand, 17% of the total radioactivity was released in a steady rate throughout a period of 60 days of incubation. Laccase activity was only detected in water extracts of the P. ostreatus fermentation. No lignin peroxidase activity was detected in either the water extract or liquid cultures of this fungus. 2-Keto-4-thiomethyl butyric acid cleavage to ethylene correlated to lignin degradation in both fungi. A study of fungal activity under solid-state conditions, in contrast to those done under defined liquid culture, may help to better understand the mechanisms involved in lignocellulose degradation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">16348683</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>07</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0099-2240</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>58</Volume>
<Issue>4</Issue>
<PubDate>
<Year>1992</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Lignocellulose Degradation during Solid-State Fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium.</ArticleTitle>
<Pagination>
<MedlinePgn>1121-7</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Lignocellulose degradation and activities related to lignin degradation were studied in the solid-state fermentation of cotton stalks by comparing two white rot fungi, Pleurotus ostreatus and Phanerochaete chrysosporium. P. chrysosporium grew vigorously, resulting in rapid, nonselective degradation of 55% of the organic components of the cotton stalks within 15 days. In contrast, P. ostreatus grew more slowly with obvious selectivity for lignin degradation and resulting in the degradation of only 20% of the organic matter after 30 days of incubation. The kinetics of C-lignin mineralization exhibited similar differences. In cultures of P. chrysosporium, mineralization ceased after 18 days, resulting in the release of 12% of the total radioactivity as CO(2). In P. ostreatus, on the other hand, 17% of the total radioactivity was released in a steady rate throughout a period of 60 days of incubation. Laccase activity was only detected in water extracts of the P. ostreatus fermentation. No lignin peroxidase activity was detected in either the water extract or liquid cultures of this fungus. 2-Keto-4-thiomethyl butyric acid cleavage to ethylene correlated to lignin degradation in both fungi. A study of fungal activity under solid-state conditions, in contrast to those done under defined liquid culture, may help to better understand the mechanisms involved in lignocellulose degradation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kerem</LastName>
<ForeName>Z</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>The Otto Warburg Center for Biotechnology in Agriculture, Faculty of Agriculture, The Hebrew University, Rehovot 76-100, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Friesem</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hadar</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1992</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1992</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1992</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16348683</ArticleId>
<ArticleId IdType="pmc">PMC195564</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.58.4.1121-1127.1992</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Anal Biochem. 1977 May 1;79(1-2):544-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">68686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1978 Mar 30;81(2):498-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">666768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1977 Apr;23(4):434-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">861849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 1990 Jan;32(4):436-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1366392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 Aug;57(8):2240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1768094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 May;57(5):1453-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1854201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1991 Jan 23;1073(1):114-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1991127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Sci Food Agric. 1972 Apr;23(4):455-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5029974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1982 Nov 30;109(2):320-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6295392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1976 May;31(5):714-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16345159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1982 Jun;43(6):1256-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16346026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1983 Nov;46(5):1140-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16346420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1985 Feb;49(2):345-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16346721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1990 Jun;56(6):1806-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 Mar;57(3):678-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348434</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E83 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000E83 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:16348683
   |texte=   Lignocellulose Degradation during Solid-State Fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:16348683" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020