Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Heat Shock Induction of Manganese Peroxidase Gene Transcription in Phanerochaete chrysosporium.

Identifieur interne : 000D76 ( Main/Curation ); précédent : 000D75; suivant : 000D77

Heat Shock Induction of Manganese Peroxidase Gene Transcription in Phanerochaete chrysosporium.

Auteurs : J A Brown [États-Unis] ; D. Li ; M. Alic ; M H Gold

Source :

RBID : pubmed:16349125

Abstract

The expression of manganese peroxidase (MnP) in nitrogen-limited cultures of Phanerochaete chrysosporium is regulated by heat shock at the level of gene transcription. Nitrogen limitation and manganous ion [Mn(II)] previously have been shown to regulate mnp gene transcription. Northern (RNA) blot analysis demonstrates that 45 degrees C heat shock results in the accumulation of mnp mRNA, even in cells grown in the absence of Mn. Heat shock induces mnp gene transcription in 4- or 5-day-old cells, and mnp mRNA is detectable after 15 min at 45 degrees C. Maximum accumulation of mnp mRNA is observed 1 to 2 h after transfer of cultures to 45 degrees C. Two hours after heat shock-induced cultures grown in the absence of Mn are transferred back to 37 degrees C, mnp mRNA is no longer detectable. Higher levels of mnp mRNA are obtained with simultaneous induction by Mn and heat shock than by either treatment alone. Neither MnP enzyme activity nor protein is detectable in heat-shocked cultures grown in the absence of Mn. However, higher MnP activity is found in the extracellular medium of cultures induced by both heat shock and Mn than in the medium of cultures induced by Mn alone. These results suggest that the putative heat shock elements found in the promoter region of the mnp genes are physiologically functional and that Mn may be required for a posttranscriptional step of MnP production under heat shock conditions.

DOI: 10.1128/AEM.59.12.4295-4299.1993
PubMed: 16349125
PubMed Central: PMC195899

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:16349125

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Heat Shock Induction of Manganese Peroxidase Gene Transcription in Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Brown, J A" sort="Brown, J A" uniqKey="Brown J" first="J A" last="Brown">J A Brown</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science & Technology, P.O. Box 9100, Portland, Oregon 97291-1000.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oregon</region>
</placeName>
<wicri:cityArea>Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science & Technology, P.O. Box 9100, Portland</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Li, D" sort="Li, D" uniqKey="Li D" first="D" last="Li">D. Li</name>
</author>
<author>
<name sortKey="Alic, M" sort="Alic, M" uniqKey="Alic M" first="M" last="Alic">M. Alic</name>
</author>
<author>
<name sortKey="Gold, M H" sort="Gold, M H" uniqKey="Gold M" first="M H" last="Gold">M H Gold</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1993">1993</date>
<idno type="RBID">pubmed:16349125</idno>
<idno type="pmid">16349125</idno>
<idno type="pmc">PMC195899</idno>
<idno type="doi">10.1128/AEM.59.12.4295-4299.1993</idno>
<idno type="wicri:Area/Main/Corpus">000D76</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D76</idno>
<idno type="wicri:Area/Main/Curation">000D76</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D76</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Heat Shock Induction of Manganese Peroxidase Gene Transcription in Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Brown, J A" sort="Brown, J A" uniqKey="Brown J" first="J A" last="Brown">J A Brown</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science & Technology, P.O. Box 9100, Portland, Oregon 97291-1000.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oregon</region>
</placeName>
<wicri:cityArea>Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science & Technology, P.O. Box 9100, Portland</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Li, D" sort="Li, D" uniqKey="Li D" first="D" last="Li">D. Li</name>
</author>
<author>
<name sortKey="Alic, M" sort="Alic, M" uniqKey="Alic M" first="M" last="Alic">M. Alic</name>
</author>
<author>
<name sortKey="Gold, M H" sort="Gold, M H" uniqKey="Gold M" first="M H" last="Gold">M H Gold</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="ISSN">0099-2240</idno>
<imprint>
<date when="1993" type="published">1993</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The expression of manganese peroxidase (MnP) in nitrogen-limited cultures of Phanerochaete chrysosporium is regulated by heat shock at the level of gene transcription. Nitrogen limitation and manganous ion [Mn(II)] previously have been shown to regulate mnp gene transcription. Northern (RNA) blot analysis demonstrates that 45 degrees C heat shock results in the accumulation of mnp mRNA, even in cells grown in the absence of Mn. Heat shock induces mnp gene transcription in 4- or 5-day-old cells, and mnp mRNA is detectable after 15 min at 45 degrees C. Maximum accumulation of mnp mRNA is observed 1 to 2 h after transfer of cultures to 45 degrees C. Two hours after heat shock-induced cultures grown in the absence of Mn are transferred back to 37 degrees C, mnp mRNA is no longer detectable. Higher levels of mnp mRNA are obtained with simultaneous induction by Mn and heat shock than by either treatment alone. Neither MnP enzyme activity nor protein is detectable in heat-shocked cultures grown in the absence of Mn. However, higher MnP activity is found in the extracellular medium of cultures induced by both heat shock and Mn than in the medium of cultures induced by Mn alone. These results suggest that the putative heat shock elements found in the promoter region of the mnp genes are physiologically functional and that Mn may be required for a posttranscriptional step of MnP production under heat shock conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">16349125</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>06</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0099-2240</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>59</Volume>
<Issue>12</Issue>
<PubDate>
<Year>1993</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Heat Shock Induction of Manganese Peroxidase Gene Transcription in Phanerochaete chrysosporium.</ArticleTitle>
<Pagination>
<MedlinePgn>4295-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The expression of manganese peroxidase (MnP) in nitrogen-limited cultures of Phanerochaete chrysosporium is regulated by heat shock at the level of gene transcription. Nitrogen limitation and manganous ion [Mn(II)] previously have been shown to regulate mnp gene transcription. Northern (RNA) blot analysis demonstrates that 45 degrees C heat shock results in the accumulation of mnp mRNA, even in cells grown in the absence of Mn. Heat shock induces mnp gene transcription in 4- or 5-day-old cells, and mnp mRNA is detectable after 15 min at 45 degrees C. Maximum accumulation of mnp mRNA is observed 1 to 2 h after transfer of cultures to 45 degrees C. Two hours after heat shock-induced cultures grown in the absence of Mn are transferred back to 37 degrees C, mnp mRNA is no longer detectable. Higher levels of mnp mRNA are obtained with simultaneous induction by Mn and heat shock than by either treatment alone. Neither MnP enzyme activity nor protein is detectable in heat-shocked cultures grown in the absence of Mn. However, higher MnP activity is found in the extracellular medium of cultures induced by both heat shock and Mn than in the medium of cultures induced by Mn alone. These results suggest that the putative heat shock elements found in the promoter region of the mnp genes are physiologically functional and that Mn may be required for a posttranscriptional step of MnP production under heat shock conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Brown</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science & Technology, P.O. Box 9100, Portland, Oregon 97291-1000.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Alic</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gold</LastName>
<ForeName>M H</ForeName>
<Initials>MH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1993</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1993</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1993</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16349125</ArticleId>
<ArticleId IdType="pmc">PMC195899</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.59.12.4295-4299.1993</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 1993 Mar 5;259(5100):1409-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8451637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1985 Nov 1;242(2):329-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4062285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1987 Feb 27;235(4792):1043-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3029864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Jan;58(1):221-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1539977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Nov 25;267(33):23688-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1429709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1987 May 15;262(14):6795-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3032976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1992 Apr;174(7):2131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1551837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Jun 2;31(21):4986-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1599925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 Aug;57(8):2240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1768094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Mar;11(3):1232-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1996089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1991 Jul;173(13):4101-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2061289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1990 May;172(5):2798-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2139653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Inorg Biochem. 1990;8:1-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2206024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1990 Sep 1;93(1):119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2227420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1986;55:1151-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2427013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1989 Mar;9(3):1376-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2725504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1987 Oct;7(10):3646-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2824993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Mar 25;264(9):5036-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2925681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1993 Sep;57(3):605-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8246842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1987 Jul;53(7):1464-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1978 Jun;35(6):1223-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1992 Jun;174(11):3532-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1592808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1991 Jan;173(1):345-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1987125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1991 Apr 15;176(1):269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2018522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Biol. 1990 Jun;2(6):544-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2088504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Inorg Biochem. 1990;8:139-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2206025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1990 Jun;172(6):3125-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2345139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Aug 15;264(23):13531-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2760033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Feb 25;264(6):3335-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2914954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1987 Sep 30;147(3):904-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2959286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1988 Jul 12;27(14):5365-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3167051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1987 Apr 2-8;326(6112):520-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3561490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1987;41:465-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3318677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1990 Jan;56(1):210-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348093</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D76 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000D76 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:16349125
   |texte=   Heat Shock Induction of Manganese Peroxidase Gene Transcription in Phanerochaete chrysosporium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:16349125" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020