Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

MnII is not a productive substrate for wild-type or recombinant lignin peroxidase isozyme H2.

Identifieur interne : 000A81 ( Main/Curation ); précédent : 000A80; suivant : 000A82

MnII is not a productive substrate for wild-type or recombinant lignin peroxidase isozyme H2.

Auteurs : M D Sollewijn Gelpke [États-Unis] ; D. Sheng ; M H Gold

Source :

RBID : pubmed:11019815

Descripteurs français

English descriptors

Abstract

The glyceraldehyde-3-phosphate dehydrogenase (gpd) gene promoter was used to drive the homologous expression of the lignin peroxidase (LiP) isozyme H2 gene in primary metabolic cultures of Phanerochaete chrysosporium. The molecular mass, pI, and optical absorption spectra of purified recombinant LiPH2 (rLiPH2) were essentially identical to those of wild-type LiPH2 (wtLiPH2). wtLiPH2 was prepared by growing cells in the absence of MnII, conditions under which P. chrysosporium manganese peroxidase (MnP) is not expressed, ensuring that wtLiPH2 was not contaminated with MnP. The kinetics of veratryl alcohol (VA) oxidation were essentially identical for rLiPH2 and wtLiPH2. The rLiPH2, wtLiPH2, and wild-type LiP isozyme H8 (wt-LiPH8) enzymes were used to reexamine previous claims that LiPH2 can oxidize Mn" at a rate sufficient to promote catalytic turnover of the enzyme. Our results demonstrate that rLiPH2, wtLiPH2, and LiPH8 do not turn over under steady-state conditions, when MnII is the sole reducing substrate. Furthermore, transient-state kinetic analyses show that the reduction rate of the catalytic intermediate, LiP compound I, by VA was at least 2 x 10(3)-fold higher than the rate of reduction in the presence of MnII. No reduction of LiP compound II was observed in the presence of MnII. In contrast to previous claims, these data strongly suggest that MnII is not a productive substrate for LiPH2 or LiPH8.

DOI: 10.1006/abbi.2000.1972
PubMed: 11019815

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:11019815

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">MnII is not a productive substrate for wild-type or recombinant lignin peroxidase isozyme H2.</title>
<author>
<name sortKey="Sollewijn Gelpke, M D" sort="Sollewijn Gelpke, M D" uniqKey="Sollewijn Gelpke M" first="M D" last="Sollewijn Gelpke">M D Sollewijn Gelpke</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton 97006-8921, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton 97006-8921</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sheng, D" sort="Sheng, D" uniqKey="Sheng D" first="D" last="Sheng">D. Sheng</name>
</author>
<author>
<name sortKey="Gold, M H" sort="Gold, M H" uniqKey="Gold M" first="M H" last="Gold">M H Gold</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2000">2000</date>
<idno type="RBID">pubmed:11019815</idno>
<idno type="pmid">11019815</idno>
<idno type="doi">10.1006/abbi.2000.1972</idno>
<idno type="wicri:Area/Main/Corpus">000A81</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A81</idno>
<idno type="wicri:Area/Main/Curation">000A81</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A81</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">MnII is not a productive substrate for wild-type or recombinant lignin peroxidase isozyme H2.</title>
<author>
<name sortKey="Sollewijn Gelpke, M D" sort="Sollewijn Gelpke, M D" uniqKey="Sollewijn Gelpke M" first="M D" last="Sollewijn Gelpke">M D Sollewijn Gelpke</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton 97006-8921, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton 97006-8921</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sheng, D" sort="Sheng, D" uniqKey="Sheng D" first="D" last="Sheng">D. Sheng</name>
</author>
<author>
<name sortKey="Gold, M H" sort="Gold, M H" uniqKey="Gold M" first="M H" last="Gold">M H Gold</name>
</author>
</analytic>
<series>
<title level="j">Archives of biochemistry and biophysics</title>
<idno type="ISSN">0003-9861</idno>
<imprint>
<date when="2000" type="published">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Catalytic Domain (MeSH)</term>
<term>Genes, Fungal (MeSH)</term>
<term>Isoenzymes (genetics)</term>
<term>Isoenzymes (isolation & purification)</term>
<term>Isoenzymes (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Manganese (chemistry)</term>
<term>Manganese (metabolism)</term>
<term>Models, Molecular (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Peroxidases (genetics)</term>
<term>Peroxidases (isolation & purification)</term>
<term>Peroxidases (metabolism)</term>
<term>Phanerochaete (enzymology)</term>
<term>Phanerochaete (genetics)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (isolation & purification)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Substrate Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cinétique (MeSH)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Gènes fongiques (MeSH)</term>
<term>Isoenzymes (génétique)</term>
<term>Isoenzymes (isolement et purification)</term>
<term>Isoenzymes (métabolisme)</term>
<term>Manganèse (composition chimique)</term>
<term>Manganèse (métabolisme)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxidases (génétique)</term>
<term>Peroxidases (isolement et purification)</term>
<term>Peroxidases (métabolisme)</term>
<term>Phanerochaete (enzymologie)</term>
<term>Phanerochaete (génétique)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (isolement et purification)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Spécificité du substrat (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Manganese</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Isoenzymes</term>
<term>Peroxidases</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Isoenzymes</term>
<term>Peroxidases</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Isoenzymes</term>
<term>Manganese</term>
<term>Peroxidases</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Manganèse</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Isoenzymes</term>
<term>Peroxidases</term>
<term>Phanerochaete</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Isoenzymes</term>
<term>Peroxidases</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Isoenzymes</term>
<term>Manganèse</term>
<term>Peroxidases</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalytic Domain</term>
<term>Genes, Fungal</term>
<term>Kinetics</term>
<term>Models, Molecular</term>
<term>Oxidation-Reduction</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Domaine catalytique</term>
<term>Gènes fongiques</term>
<term>Modèles moléculaires</term>
<term>Oxydoréduction</term>
<term>Spécificité du substrat</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The glyceraldehyde-3-phosphate dehydrogenase (gpd) gene promoter was used to drive the homologous expression of the lignin peroxidase (LiP) isozyme H2 gene in primary metabolic cultures of Phanerochaete chrysosporium. The molecular mass, pI, and optical absorption spectra of purified recombinant LiPH2 (rLiPH2) were essentially identical to those of wild-type LiPH2 (wtLiPH2). wtLiPH2 was prepared by growing cells in the absence of MnII, conditions under which P. chrysosporium manganese peroxidase (MnP) is not expressed, ensuring that wtLiPH2 was not contaminated with MnP. The kinetics of veratryl alcohol (VA) oxidation were essentially identical for rLiPH2 and wtLiPH2. The rLiPH2, wtLiPH2, and wild-type LiP isozyme H8 (wt-LiPH8) enzymes were used to reexamine previous claims that LiPH2 can oxidize Mn" at a rate sufficient to promote catalytic turnover of the enzyme. Our results demonstrate that rLiPH2, wtLiPH2, and LiPH8 do not turn over under steady-state conditions, when MnII is the sole reducing substrate. Furthermore, transient-state kinetic analyses show that the reduction rate of the catalytic intermediate, LiP compound I, by VA was at least 2 x 10(3)-fold higher than the rate of reduction in the presence of MnII. No reduction of LiP compound II was observed in the presence of MnII. In contrast to previous claims, these data strongly suggest that MnII is not a productive substrate for LiPH2 or LiPH8.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11019815</PMID>
<DateCompleted>
<Year>2000</Year>
<Month>10</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0003-9861</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>381</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2000</Year>
<Month>Sep</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Archives of biochemistry and biophysics</Title>
<ISOAbbreviation>Arch Biochem Biophys</ISOAbbreviation>
</Journal>
<ArticleTitle>MnII is not a productive substrate for wild-type or recombinant lignin peroxidase isozyme H2.</ArticleTitle>
<Pagination>
<MedlinePgn>16-24</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The glyceraldehyde-3-phosphate dehydrogenase (gpd) gene promoter was used to drive the homologous expression of the lignin peroxidase (LiP) isozyme H2 gene in primary metabolic cultures of Phanerochaete chrysosporium. The molecular mass, pI, and optical absorption spectra of purified recombinant LiPH2 (rLiPH2) were essentially identical to those of wild-type LiPH2 (wtLiPH2). wtLiPH2 was prepared by growing cells in the absence of MnII, conditions under which P. chrysosporium manganese peroxidase (MnP) is not expressed, ensuring that wtLiPH2 was not contaminated with MnP. The kinetics of veratryl alcohol (VA) oxidation were essentially identical for rLiPH2 and wtLiPH2. The rLiPH2, wtLiPH2, and wild-type LiP isozyme H8 (wt-LiPH8) enzymes were used to reexamine previous claims that LiPH2 can oxidize Mn" at a rate sufficient to promote catalytic turnover of the enzyme. Our results demonstrate that rLiPH2, wtLiPH2, and LiPH8 do not turn over under steady-state conditions, when MnII is the sole reducing substrate. Furthermore, transient-state kinetic analyses show that the reduction rate of the catalytic intermediate, LiP compound I, by VA was at least 2 x 10(3)-fold higher than the rate of reduction in the presence of MnII. No reduction of LiP compound II was observed in the presence of MnII. In contrast to previous claims, these data strongly suggest that MnII is not a productive substrate for LiPH2 or LiPH8.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sollewijn Gelpke</LastName>
<ForeName>M D</ForeName>
<Initials>MD</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton 97006-8921, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sheng</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gold</LastName>
<ForeName>M H</ForeName>
<Initials>MH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Arch Biochem Biophys</MedlineTA>
<NlmUniqueID>0372430</NlmUniqueID>
<ISSNLinking>0003-9861</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007527">Isoenzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42Z2K6ZL8P</RegistryNumber>
<NameOfSubstance UI="D008345">Manganese</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="C042858">lignin peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.13</RegistryNumber>
<NameOfSubstance UI="C051129">manganese peroxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007527" MajorTopicYN="N">Isoenzymes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008345" MajorTopicYN="N">Manganese</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2000</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2000</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>11</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2000</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11019815</ArticleId>
<ArticleId IdType="pii">S0003-9861(00)91972-6</ArticleId>
<ArticleId IdType="doi">10.1006/abbi.2000.1972</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A81 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000A81 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:11019815
   |texte=   MnII is not a productive substrate for wild-type or recombinant lignin peroxidase isozyme H2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:11019815" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020