Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surface.

Identifieur interne : 000503 ( Main/Curation ); précédent : 000502; suivant : 000504

Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surface.

Auteurs : Federico Tasca [Suède] ; Wolfgang Harreither ; Roland Ludwig ; John Justin Gooding ; Lo Gorton

Source :

RBID : pubmed:21417322

Descripteurs français

English descriptors

Abstract

One of the challenges in the field of biosensors and biofuel cells is to establish a highly efficient electron transfer rate between the active site of redox enzymes and electrodes to fully access the catalytic potential of the biocatalyst and achieve high current densities. We report on very efficient direct electron transfer (DET) between cellobiose dehydrogenase (CDH) from Phanerochaete sordida (PsCDH) and surface modified single walled carbon nanotubes (SWCNT). Sonicated SWCNTs were adsorbed on the top of glassy carbon electrodes and modified with aryl diazonium salts generated in situ from p-aminobenzoic acid and p-phenylenediamine, thus featuring at acidic pH (3.5 and 4.5) negative or positive surface charges. After adsorption of PsCDH, both electrode types showed excellent long-term stability and very efficient DET. The modified electrode presenting p-aminophenyl groups produced a DET current density of 500 μA cm(-2) at 200 mV vs normal hydrogen reference electrode (NHE) in a 5 mM lactose solution buffered at pH 3.5. This is the highest reported DET value so far using a CDH modified electrode and comes close to electrodes using mediated electron transfer. Moreover, the onset of the electrocatalytic current for lactose oxidation started at 70 mV vs NHE, a potential which is 50 mV lower compared to when unmodified SWCNTs were used. This effect potentially reduces the interference by oxidizable matrix components in biosensors and increases the open circuit potential in biofuel cells. The stability of the electrode was greatly increased compared with unmodified but cross-linked SWCNTs electrodes and lost only 15% of the initial current after 50 h of constant potential scanning.

DOI: 10.1021/ac103250b
PubMed: 21417322
PubMed Central: PMC3076992

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21417322

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surface.</title>
<author>
<name sortKey="Tasca, Federico" sort="Tasca, Federico" uniqKey="Tasca F" first="Federico" last="Tasca">Federico Tasca</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Analytical Chemistry/Biochemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Analytical Chemistry/Biochemistry, Lund University, P.O. Box 124, SE-221 00 Lund</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Harreither, Wolfgang" sort="Harreither, Wolfgang" uniqKey="Harreither W" first="Wolfgang" last="Harreither">Wolfgang Harreither</name>
</author>
<author>
<name sortKey="Ludwig, Roland" sort="Ludwig, Roland" uniqKey="Ludwig R" first="Roland" last="Ludwig">Roland Ludwig</name>
</author>
<author>
<name sortKey="Gooding, John Justin" sort="Gooding, John Justin" uniqKey="Gooding J" first="John Justin" last="Gooding">John Justin Gooding</name>
</author>
<author>
<name sortKey="Gorton, Lo" sort="Gorton, Lo" uniqKey="Gorton L" first="Lo" last="Gorton">Lo Gorton</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21417322</idno>
<idno type="pmid">21417322</idno>
<idno type="doi">10.1021/ac103250b</idno>
<idno type="pmc">PMC3076992</idno>
<idno type="wicri:Area/Main/Corpus">000503</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000503</idno>
<idno type="wicri:Area/Main/Curation">000503</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000503</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surface.</title>
<author>
<name sortKey="Tasca, Federico" sort="Tasca, Federico" uniqKey="Tasca F" first="Federico" last="Tasca">Federico Tasca</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Analytical Chemistry/Biochemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Analytical Chemistry/Biochemistry, Lund University, P.O. Box 124, SE-221 00 Lund</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Harreither, Wolfgang" sort="Harreither, Wolfgang" uniqKey="Harreither W" first="Wolfgang" last="Harreither">Wolfgang Harreither</name>
</author>
<author>
<name sortKey="Ludwig, Roland" sort="Ludwig, Roland" uniqKey="Ludwig R" first="Roland" last="Ludwig">Roland Ludwig</name>
</author>
<author>
<name sortKey="Gooding, John Justin" sort="Gooding, John Justin" uniqKey="Gooding J" first="John Justin" last="Gooding">John Justin Gooding</name>
</author>
<author>
<name sortKey="Gorton, Lo" sort="Gorton, Lo" uniqKey="Gorton L" first="Lo" last="Gorton">Lo Gorton</name>
</author>
</analytic>
<series>
<title level="j">Analytical chemistry</title>
<idno type="eISSN">1520-6882</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adsorption (MeSH)</term>
<term>Biocatalysis (MeSH)</term>
<term>Carbohydrate Dehydrogenases (chemistry)</term>
<term>Carbohydrate Dehydrogenases (metabolism)</term>
<term>Carbon (chemistry)</term>
<term>Diazonium Compounds (chemistry)</term>
<term>Diazonium Compounds (metabolism)</term>
<term>Electrodes (MeSH)</term>
<term>Electron Transport (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Structure (MeSH)</term>
<term>Nanotubes, Carbon (chemistry)</term>
<term>Phanerochaete (enzymology)</term>
<term>Surface Properties (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adsorption (MeSH)</term>
<term>Biocatalyse (MeSH)</term>
<term>Carbohydrate dehydrogenases (composition chimique)</term>
<term>Carbohydrate dehydrogenases (métabolisme)</term>
<term>Carbone (composition chimique)</term>
<term>Composés diazonium (composition chimique)</term>
<term>Composés diazonium (métabolisme)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Nanotubes de carbone (composition chimique)</term>
<term>Phanerochaete (enzymologie)</term>
<term>Propriétés de surface (MeSH)</term>
<term>Structure moléculaire (MeSH)</term>
<term>Transport d'électrons (MeSH)</term>
<term>Électrodes (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carbohydrate Dehydrogenases</term>
<term>Carbon</term>
<term>Diazonium Compounds</term>
<term>Nanotubes, Carbon</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbohydrate Dehydrogenases</term>
<term>Diazonium Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Carbohydrate dehydrogenases</term>
<term>Carbone</term>
<term>Composés diazonium</term>
<term>Nanotubes de carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carbohydrate dehydrogenases</term>
<term>Composés diazonium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adsorption</term>
<term>Biocatalysis</term>
<term>Electrodes</term>
<term>Electron Transport</term>
<term>Models, Molecular</term>
<term>Molecular Structure</term>
<term>Surface Properties</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adsorption</term>
<term>Biocatalyse</term>
<term>Modèles moléculaires</term>
<term>Propriétés de surface</term>
<term>Structure moléculaire</term>
<term>Transport d'électrons</term>
<term>Électrodes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">One of the challenges in the field of biosensors and biofuel cells is to establish a highly efficient electron transfer rate between the active site of redox enzymes and electrodes to fully access the catalytic potential of the biocatalyst and achieve high current densities. We report on very efficient direct electron transfer (DET) between cellobiose dehydrogenase (CDH) from Phanerochaete sordida (PsCDH) and surface modified single walled carbon nanotubes (SWCNT). Sonicated SWCNTs were adsorbed on the top of glassy carbon electrodes and modified with aryl diazonium salts generated in situ from p-aminobenzoic acid and p-phenylenediamine, thus featuring at acidic pH (3.5 and 4.5) negative or positive surface charges. After adsorption of PsCDH, both electrode types showed excellent long-term stability and very efficient DET. The modified electrode presenting p-aminophenyl groups produced a DET current density of 500 μA cm(-2) at 200 mV vs normal hydrogen reference electrode (NHE) in a 5 mM lactose solution buffered at pH 3.5. This is the highest reported DET value so far using a CDH modified electrode and comes close to electrodes using mediated electron transfer. Moreover, the onset of the electrocatalytic current for lactose oxidation started at 70 mV vs NHE, a potential which is 50 mV lower compared to when unmodified SWCNTs were used. This effect potentially reduces the interference by oxidizable matrix components in biosensors and increases the open circuit potential in biofuel cells. The stability of the electrode was greatly increased compared with unmodified but cross-linked SWCNTs electrodes and lost only 15% of the initial current after 50 h of constant potential scanning.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21417322</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>08</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-6882</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>83</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2011</Year>
<Month>Apr</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Analytical chemistry</Title>
<ISOAbbreviation>Anal Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surface.</ArticleTitle>
<Pagination>
<MedlinePgn>3042-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/ac103250b</ELocationID>
<Abstract>
<AbstractText>One of the challenges in the field of biosensors and biofuel cells is to establish a highly efficient electron transfer rate between the active site of redox enzymes and electrodes to fully access the catalytic potential of the biocatalyst and achieve high current densities. We report on very efficient direct electron transfer (DET) between cellobiose dehydrogenase (CDH) from Phanerochaete sordida (PsCDH) and surface modified single walled carbon nanotubes (SWCNT). Sonicated SWCNTs were adsorbed on the top of glassy carbon electrodes and modified with aryl diazonium salts generated in situ from p-aminobenzoic acid and p-phenylenediamine, thus featuring at acidic pH (3.5 and 4.5) negative or positive surface charges. After adsorption of PsCDH, both electrode types showed excellent long-term stability and very efficient DET. The modified electrode presenting p-aminophenyl groups produced a DET current density of 500 μA cm(-2) at 200 mV vs normal hydrogen reference electrode (NHE) in a 5 mM lactose solution buffered at pH 3.5. This is the highest reported DET value so far using a CDH modified electrode and comes close to electrodes using mediated electron transfer. Moreover, the onset of the electrocatalytic current for lactose oxidation started at 70 mV vs NHE, a potential which is 50 mV lower compared to when unmodified SWCNTs were used. This effect potentially reduces the interference by oxidizable matrix components in biosensors and increases the open circuit potential in biofuel cells. The stability of the electrode was greatly increased compared with unmodified but cross-linked SWCNTs electrodes and lost only 15% of the initial current after 50 h of constant potential scanning.</AbstractText>
<CopyrightInformation>© 2011 American Chemical Society</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tasca</LastName>
<ForeName>Federico</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Analytical Chemistry/Biochemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Harreither</LastName>
<ForeName>Wolfgang</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ludwig</LastName>
<ForeName>Roland</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gooding</LastName>
<ForeName>John Justin</ForeName>
<Initials>JJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gorton</LastName>
<ForeName>Lo</ForeName>
<Initials>L</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>03</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Anal Chem</MedlineTA>
<NlmUniqueID>0370536</NlmUniqueID>
<ISSNLinking>0003-2700</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003979">Diazonium Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037742">Nanotubes, Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.-</RegistryNumber>
<NameOfSubstance UI="D002237">Carbohydrate Dehydrogenases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.99.18</RegistryNumber>
<NameOfSubstance UI="C019859">cellobiose-quinone oxidoreductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000327" MajorTopicYN="N">Adsorption</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055162" MajorTopicYN="N">Biocatalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002237" MajorTopicYN="N">Carbohydrate Dehydrogenases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003979" MajorTopicYN="N">Diazonium Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004566" MajorTopicYN="N">Electrodes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015394" MajorTopicYN="N">Molecular Structure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037742" MajorTopicYN="N">Nanotubes, Carbon</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013499" MajorTopicYN="N">Surface Properties</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21417322</ArticleId>
<ArticleId IdType="doi">10.1021/ac103250b</ArticleId>
<ArticleId IdType="pmc">PMC3076992</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2003 Jun 18;125(24):7156-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12797771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2004 Apr;64(2):213-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14666391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2004 Oct;104(10):4867-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15669171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Apr;67(4):1766-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11282631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2008 Jul;108(7):2379-438</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18620368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2007 Jan 16;23(2):364-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17209577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2000 Jan 15;8(1):79-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10673428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Chem Chem Phys. 2008 Oct 28;10(40):6093-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18846297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemphyschem. 2010 Sep 10;11(13):2674-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20661990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosens Bioelectron. 2010 Mar 15;25(7):1710-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20071159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemistry. 2007;13(36):10168-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17937376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1991 Feb 26;196(1):101-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2001691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2009 Apr 1;81(7):2791-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19256522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2006 Dec;10(6):664-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17035075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protein Pept Sci. 2006 Jun;7(3):255-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16787264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2008 Jul;108(7):2439-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18620369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 May;75(9):2750-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19270118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2007 May 7;(17):1710-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17457416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2005 Jan 15;77(2):729-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2009 May 15;81(10):4082-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19438267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2006 Jan 15;78(2):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16408919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2002 Aug 14;124(32):9591-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12167054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosens Bioelectron. 2008 Oct 15;24(2):272-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18479907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Chem Chem Phys. 2010 Jul 28;12(28):7894-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20502841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2005 Dec 28;127(51):18328-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16366588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem Biophys Methods. 1985 May;11(1):13-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2409124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1993 Feb 1;300(2):705-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8434950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2005 Dec 29;109(51):24401-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16375441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Biochem Eng Biotechnol. 2008;109:19-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17928972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2007 Oct;107(10):4366-413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17845060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2003 Jul 30;125(30):9006-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15369344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2006 Aug 15;22(17):7421-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16893248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosens Bioelectron. 2005 Apr 15;20(10):2010-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15741070</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000503 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000503 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:21417322
   |texte=   Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surface.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:21417322" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020