Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium.

Identifieur interne : 001011 ( Main/Corpus ); précédent : 001010; suivant : 001012

Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium.

Auteurs : J A Bumpus ; B J Brock

Source :

RBID : pubmed:3389809

English descriptors

Abstract

Biodegradation of crystal violet (N,N,N',N',N'',N''-hexamethylpararosaniline) in ligninolytic (nitrogen-limited) cultures of the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance of crystal violet and by the identification of three metabolites (N,N,N',N',N''-pentamethylpararosaniline, N,N,N',N''-tetramethylpararosaniline, and N,N',N''-trimethylpararosaniline) formed by sequential N-demethylation of the parent compound. Metabolite formation also occurred when crystal violet was incubated with the extracellular fluid obtained from ligninolytic cultures of this fungus, provided that an H2O2-generating system was supplied. This, as well as the fact that a purified ligninase catalyzed N-demethylation of crystal violet, demonstrated that biodegradation of crystal violet by this fungus is dependent, at least in part, upon its lignin-degrading system. In addition to crystal violet, six other triphenylmethane dyes (pararosaniline, cresol red, bromphenol blue, ethyl violet, malachite green, and brilliant green) were shown to be degraded by the lignin-degrading system of this fungus. An unexpected result was the finding that substantial degradation of crystal violet also occurred in nonligninolytic (nitrogen-sufficient) cultures of P. chrysosporium, suggesting that in addition to the lignin-degrading system, another mechanism exists in this fungus which is also able to degrade crystal violet.

DOI: 10.1128/AEM.54.5.1143-1150.1988
PubMed: 3389809
PubMed Central: PMC202618

Links to Exploration step

pubmed:3389809

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Bumpus, J A" sort="Bumpus, J A" uniqKey="Bumpus J" first="J A" last="Bumpus">J A Bumpus</name>
<affiliation>
<nlm:affiliation>Biology Department, Utah State University, Logan 84322-4430.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brock, B J" sort="Brock, B J" uniqKey="Brock B" first="B J" last="Brock">B J Brock</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1988">1988</date>
<idno type="RBID">pubmed:3389809</idno>
<idno type="pmid">3389809</idno>
<idno type="pmc">PMC202618</idno>
<idno type="doi">10.1128/AEM.54.5.1143-1150.1988</idno>
<idno type="wicri:Area/Main/Corpus">001011</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001011</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Bumpus, J A" sort="Bumpus, J A" uniqKey="Bumpus J" first="J A" last="Bumpus">J A Bumpus</name>
<affiliation>
<nlm:affiliation>Biology Department, Utah State University, Logan 84322-4430.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brock, B J" sort="Brock, B J" uniqKey="Brock B" first="B J" last="Brock">B J Brock</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="ISSN">0099-2240</idno>
<imprint>
<date when="1988" type="published">1988</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (enzymology)</term>
<term>Basidiomycota (physiology)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Catalysis (MeSH)</term>
<term>Extracellular Space (microbiology)</term>
<term>Extracellular Space (physiology)</term>
<term>Gentian Violet (analysis)</term>
<term>Lignin (metabolism)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Oxidoreductases, N-Demethylating (metabolism)</term>
<term>Oxygenases (physiology)</term>
<term>Peroxidases (MeSH)</term>
<term>Trityl Compounds (analysis)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Gentian Violet</term>
<term>Trityl Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Lignin</term>
<term>Oxidoreductases, N-Demethylating</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Extracellular Space</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
<term>Extracellular Space</term>
<term>Oxygenases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Catalysis</term>
<term>Mass Spectrometry</term>
<term>Peroxidases</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Biodegradation of crystal violet (N,N,N',N',N'',N''-hexamethylpararosaniline) in ligninolytic (nitrogen-limited) cultures of the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance of crystal violet and by the identification of three metabolites (N,N,N',N',N''-pentamethylpararosaniline, N,N,N',N''-tetramethylpararosaniline, and N,N',N''-trimethylpararosaniline) formed by sequential N-demethylation of the parent compound. Metabolite formation also occurred when crystal violet was incubated with the extracellular fluid obtained from ligninolytic cultures of this fungus, provided that an H2O2-generating system was supplied. This, as well as the fact that a purified ligninase catalyzed N-demethylation of crystal violet, demonstrated that biodegradation of crystal violet by this fungus is dependent, at least in part, upon its lignin-degrading system. In addition to crystal violet, six other triphenylmethane dyes (pararosaniline, cresol red, bromphenol blue, ethyl violet, malachite green, and brilliant green) were shown to be degraded by the lignin-degrading system of this fungus. An unexpected result was the finding that substantial degradation of crystal violet also occurred in nonligninolytic (nitrogen-sufficient) cultures of P. chrysosporium, suggesting that in addition to the lignin-degrading system, another mechanism exists in this fungus which is also able to degrade crystal violet.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">3389809</PMID>
<DateCompleted>
<Year>1988</Year>
<Month>07</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0099-2240</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>54</Volume>
<Issue>5</Issue>
<PubDate>
<Year>1988</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium.</ArticleTitle>
<Pagination>
<MedlinePgn>1143-50</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Biodegradation of crystal violet (N,N,N',N',N'',N''-hexamethylpararosaniline) in ligninolytic (nitrogen-limited) cultures of the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance of crystal violet and by the identification of three metabolites (N,N,N',N',N''-pentamethylpararosaniline, N,N,N',N''-tetramethylpararosaniline, and N,N',N''-trimethylpararosaniline) formed by sequential N-demethylation of the parent compound. Metabolite formation also occurred when crystal violet was incubated with the extracellular fluid obtained from ligninolytic cultures of this fungus, provided that an H2O2-generating system was supplied. This, as well as the fact that a purified ligninase catalyzed N-demethylation of crystal violet, demonstrated that biodegradation of crystal violet by this fungus is dependent, at least in part, upon its lignin-degrading system. In addition to crystal violet, six other triphenylmethane dyes (pararosaniline, cresol red, bromphenol blue, ethyl violet, malachite green, and brilliant green) were shown to be degraded by the lignin-degrading system of this fungus. An unexpected result was the finding that substantial degradation of crystal violet also occurred in nonligninolytic (nitrogen-sufficient) cultures of P. chrysosporium, suggesting that in addition to the lignin-degrading system, another mechanism exists in this fungus which is also able to degrade crystal violet.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bumpus</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Biology Department, Utah State University, Logan 84322-4430.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brock</LastName>
<ForeName>B J</ForeName>
<Initials>BJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014320">Trityl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="C042858">lignin peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.13.-</RegistryNumber>
<NameOfSubstance UI="D010105">Oxygenases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.5.-</RegistryNumber>
<NameOfSubstance UI="D010089">Oxidoreductases, N-Demethylating</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>J4Z741D6O5</RegistryNumber>
<NameOfSubstance UI="D005840">Gentian Violet</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005110" MajorTopicYN="N">Extracellular Space</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005840" MajorTopicYN="N">Gentian Violet</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010089" MajorTopicYN="N">Oxidoreductases, N-Demethylating</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010105" MajorTopicYN="N">Oxygenases</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="Y">Peroxidases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014320" MajorTopicYN="N">Trityl Compounds</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1988</Year>
<Month>5</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1988</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1988</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">3389809</ArticleId>
<ArticleId IdType="pmc">PMC202618</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.54.5.1143-1150.1988</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Physicians Manage. 1986 Feb;26(2):161-6, 171, 174</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10276504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Jun 21;228(4706):1434-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3925550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1986 Feb 1;244(2):750-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3080953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Environ Contam Toxicol. 1985 Mar;34(3):323-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3884067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Poult Sci. 1976 May;55(3):852-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">819918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Microbiol. 1987;15(2):141-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3322681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1982 Sep;44(3):732-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16346099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Dis Child. 1977 Feb;131(2):178-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">319653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1980 Nov 10;255(21):10174-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7191853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 1978 Nov;58(2-3):269-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">745616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Apr;81(8):2280-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lab Invest. 1962 Nov;11:1217-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13986291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Environ Contam Toxicol. 1985 Dec;35(6):729-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4074939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1983 Jul 10;258(13):8129-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6863282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 1979 Feb;66(2):103-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">372796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1985 Nov;50(5):1274-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16346932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1986 May 25;261(15):6900-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3700421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1981 Aug;42(2):290-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16345829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1986 Dec 25;261(36):16948-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3023375</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001011 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001011 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:3389809
   |texte=   Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:3389809" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020