Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Role of organic acid chelators in manganese regulation of lignin degradation by Phanerochaete chrysosporium.

Identifieur interne : 000E37 ( Main/Corpus ); précédent : 000E36; suivant : 000E38

Role of organic acid chelators in manganese regulation of lignin degradation by Phanerochaete chrysosporium.

Auteurs : J. Perez ; T W Jeffries

Source :

RBID : pubmed:8323262

English descriptors

Abstract

Nitrogen, carbon, and manganese are potent regulators of lignin degradation, but although nitrogen and carbon elicit a generalizated response when cells are starved, manganese is a relatively specific regulator of lignin and manganese peroxidase (LiP and MnP, respectively). At high manganese levels, MnP is induced, and LiP is repressed. At low Mn levels, MnP is repressed, and LiP is induced. Organic acid chelators are very important in attaining LiP repression with high Mn. Both mineralization and lignin depolymerization are regulated by manganese in the presence of organic acid chelators. As long as the chelators keep Mn(II) and Mn(III) in solution, repression is observed, but eventually, dismutation reactions cause the formation and precipitation of Mn (IV) as MnO2. Repression is immediately relieved, and depolymerization and mineralization proceed at a high rate.

DOI: 10.1007/BF02918992
PubMed: 8323262

Links to Exploration step

pubmed:8323262

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Role of organic acid chelators in manganese regulation of lignin degradation by Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Perez, J" sort="Perez, J" uniqKey="Perez J" first="J" last="Perez">J. Perez</name>
<affiliation>
<nlm:affiliation>Institute for Microbial and Biochemical Technology, Forest Products Laboratory, Madison, WI 53705.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jeffries, T W" sort="Jeffries, T W" uniqKey="Jeffries T" first="T W" last="Jeffries">T W Jeffries</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1993">1993</date>
<idno type="RBID">pubmed:8323262</idno>
<idno type="pmid">8323262</idno>
<idno type="doi">10.1007/BF02918992</idno>
<idno type="wicri:Area/Main/Corpus">000E37</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E37</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Role of organic acid chelators in manganese regulation of lignin degradation by Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Perez, J" sort="Perez, J" uniqKey="Perez J" first="J" last="Perez">J. Perez</name>
<affiliation>
<nlm:affiliation>Institute for Microbial and Biochemical Technology, Forest Products Laboratory, Madison, WI 53705.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jeffries, T W" sort="Jeffries, T W" uniqKey="Jeffries T" first="T W" last="Jeffries">T W Jeffries</name>
</author>
</analytic>
<series>
<title level="j">Applied biochemistry and biotechnology</title>
<idno type="ISSN">0273-2289</idno>
<imprint>
<date when="1993" type="published">1993</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acids (metabolism)</term>
<term>Basidiomycota (metabolism)</term>
<term>Benzyl Alcohols (metabolism)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Chelating Agents (metabolism)</term>
<term>Enzyme Stability (MeSH)</term>
<term>Isoenzymes (metabolism)</term>
<term>Lignin (metabolism)</term>
<term>Malonates (metabolism)</term>
<term>Manganese (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Peroxidases (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acids</term>
<term>Benzyl Alcohols</term>
<term>Chelating Agents</term>
<term>Isoenzymes</term>
<term>Lignin</term>
<term>Malonates</term>
<term>Manganese</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Enzyme Stability</term>
<term>Oxidation-Reduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nitrogen, carbon, and manganese are potent regulators of lignin degradation, but although nitrogen and carbon elicit a generalizated response when cells are starved, manganese is a relatively specific regulator of lignin and manganese peroxidase (LiP and MnP, respectively). At high manganese levels, MnP is induced, and LiP is repressed. At low Mn levels, MnP is repressed, and LiP is induced. Organic acid chelators are very important in attaining LiP repression with high Mn. Both mineralization and lignin depolymerization are regulated by manganese in the presence of organic acid chelators. As long as the chelators keep Mn(II) and Mn(III) in solution, repression is observed, but eventually, dismutation reactions cause the formation and precipitation of Mn (IV) as MnO2. Repression is immediately relieved, and depolymerization and mineralization proceed at a high rate.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">8323262</PMID>
<DateCompleted>
<Year>1993</Year>
<Month>08</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0273-2289</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>39-40</Volume>
<PubDate>
<Year>1993</Year>
<Season>Spring</Season>
</PubDate>
</JournalIssue>
<Title>Applied biochemistry and biotechnology</Title>
<ISOAbbreviation>Appl Biochem Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Role of organic acid chelators in manganese regulation of lignin degradation by Phanerochaete chrysosporium.</ArticleTitle>
<Pagination>
<MedlinePgn>227-38</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Nitrogen, carbon, and manganese are potent regulators of lignin degradation, but although nitrogen and carbon elicit a generalizated response when cells are starved, manganese is a relatively specific regulator of lignin and manganese peroxidase (LiP and MnP, respectively). At high manganese levels, MnP is induced, and LiP is repressed. At low Mn levels, MnP is repressed, and LiP is induced. Organic acid chelators are very important in attaining LiP repression with high Mn. Both mineralization and lignin depolymerization are regulated by manganese in the presence of organic acid chelators. As long as the chelators keep Mn(II) and Mn(III) in solution, repression is observed, but eventually, dismutation reactions cause the formation and precipitation of Mn (IV) as MnO2. Repression is immediately relieved, and depolymerization and mineralization proceed at a high rate.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Perez</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute for Microbial and Biochemical Technology, Forest Products Laboratory, Madison, WI 53705.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jeffries</LastName>
<ForeName>T W</ForeName>
<Initials>TW</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Biochem Biotechnol</MedlineTA>
<NlmUniqueID>8208561</NlmUniqueID>
<ISSNLinking>0273-2289</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000143">Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001592">Benzyl Alcohols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002614">Chelating Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007527">Isoenzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008314">Malonates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42Z2K6ZL8P</RegistryNumber>
<NameOfSubstance UI="D008345">Manganese</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9KX7ZMG0MK</RegistryNumber>
<NameOfSubstance UI="C030290">malonic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="C042858">lignin peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.13</RegistryNumber>
<NameOfSubstance UI="C051129">manganese peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>MB4T4A711H</RegistryNumber>
<NameOfSubstance UI="C042197">veratryl alcohol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000143" MajorTopicYN="N">Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001592" MajorTopicYN="N">Benzyl Alcohols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002614" MajorTopicYN="N">Chelating Agents</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004795" MajorTopicYN="N">Enzyme Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007527" MajorTopicYN="N">Isoenzymes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008314" MajorTopicYN="N">Malonates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008345" MajorTopicYN="N">Manganese</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1993</Year>
<Month>1</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1993</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1993</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">8323262</ArticleId>
<ArticleId IdType="doi">10.1007/BF02918992</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 1991 Apr 15;176(1):269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2018522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1986 Feb 1;244(2):750-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3080953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1988 Jul 12;27(14):5365-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3167051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1990 Jan;56(1):210-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Apr;81(8):2280-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Aug;58(8):2402-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1514788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1986 Dec;251(2):688-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3800395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1990 Aug 20;269(1):261-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2387411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1990 Nov 20;29(46):10475-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2176868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 Mar 10;260(5):2609-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2982828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1975 Jul;72(7):2515-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1058470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1981 Aug;42(2):290-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16345829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1978 Sep;135(3):790-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">690075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1990 Jun;56(6):1806-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348221</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E37 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000E37 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:8323262
   |texte=   Role of organic acid chelators in manganese regulation of lignin degradation by Phanerochaete chrysosporium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:8323262" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020