Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modelling the growth kinetics of Phanerochaete chrysosporium in submerged static culture.

Identifieur interne : 000E07 ( Main/Corpus ); précédent : 000E06; suivant : 000E08

Modelling the growth kinetics of Phanerochaete chrysosporium in submerged static culture.

Auteurs : C D Barclay ; R L Legge ; G F Farquhar

Source :

RBID : pubmed:8328805

English descriptors

Abstract

The potential commercial application of Phanerochaete chrysosporium requires methods for quantitatively predicting growth and substrate utilization. The growth kinetics of P. chrysosporium INA-12 (CNCM I-398) were investigated and modelled under nonlimiting nitrogen and carbon conditions in submerged static culture. This strain, unlike other strains, does not require nutrient limitation for induction of lignin peroxidase. Maximum levels of lignin peroxidase activity were reached 7 days after culture initiation, when almost 80% of the initial glycerol and 70% of the initial nitrogen were still present. Lignin peroxidase levels then decreased, while biomass levels increased until about day 14. The ratio of cell dry weight to wet weight was constant until the maximum biomass concentration was achieved, after which there was a decrease in the water content. The change in this ratio reflects cell lysis as it correlated with increased concentrations of nitrogen in the media, arising from cell leakage. The suitability of four growth models to predict growth, and in some cases glycerol consumption, was evaluated. A simple linear model and the Emerson model performed poorly for the early stages of growth, while a modified Williams model and the Monod model predicted substrate and biomass concentrations equally well. All models will predict biomass concentrations during the active growth phase, but they should not be used to predict biomass concentrations after the stationary growth phase, when cell lysis becomes significant.

DOI: 10.1128/AEM.59.6.1887-1892.1993
PubMed: 8328805
PubMed Central: PMC182176

Links to Exploration step

pubmed:8328805

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modelling the growth kinetics of Phanerochaete chrysosporium in submerged static culture.</title>
<author>
<name sortKey="Barclay, C D" sort="Barclay, C D" uniqKey="Barclay C" first="C D" last="Barclay">C D Barclay</name>
<affiliation>
<nlm:affiliation>Department of Chemical Engineering, University of Waterloo, Ontario, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Legge, R L" sort="Legge, R L" uniqKey="Legge R" first="R L" last="Legge">R L Legge</name>
</author>
<author>
<name sortKey="Farquhar, G F" sort="Farquhar, G F" uniqKey="Farquhar G" first="G F" last="Farquhar">G F Farquhar</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1993">1993</date>
<idno type="RBID">pubmed:8328805</idno>
<idno type="pmid">8328805</idno>
<idno type="pmc">PMC182176</idno>
<idno type="doi">10.1128/AEM.59.6.1887-1892.1993</idno>
<idno type="wicri:Area/Main/Corpus">000E07</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E07</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Modelling the growth kinetics of Phanerochaete chrysosporium in submerged static culture.</title>
<author>
<name sortKey="Barclay, C D" sort="Barclay, C D" uniqKey="Barclay C" first="C D" last="Barclay">C D Barclay</name>
<affiliation>
<nlm:affiliation>Department of Chemical Engineering, University of Waterloo, Ontario, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Legge, R L" sort="Legge, R L" uniqKey="Legge R" first="R L" last="Legge">R L Legge</name>
</author>
<author>
<name sortKey="Farquhar, G F" sort="Farquhar, G F" uniqKey="Farquhar G" first="G F" last="Farquhar">G F Farquhar</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="ISSN">0099-2240</idno>
<imprint>
<date when="1993" type="published">1993</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (enzymology)</term>
<term>Basidiomycota (growth & development)</term>
<term>Culture Media (chemistry)</term>
<term>Ecology (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Peroxidases (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Culture Media</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Ecology</term>
<term>Models, Biological</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The potential commercial application of Phanerochaete chrysosporium requires methods for quantitatively predicting growth and substrate utilization. The growth kinetics of P. chrysosporium INA-12 (CNCM I-398) were investigated and modelled under nonlimiting nitrogen and carbon conditions in submerged static culture. This strain, unlike other strains, does not require nutrient limitation for induction of lignin peroxidase. Maximum levels of lignin peroxidase activity were reached 7 days after culture initiation, when almost 80% of the initial glycerol and 70% of the initial nitrogen were still present. Lignin peroxidase levels then decreased, while biomass levels increased until about day 14. The ratio of cell dry weight to wet weight was constant until the maximum biomass concentration was achieved, after which there was a decrease in the water content. The change in this ratio reflects cell lysis as it correlated with increased concentrations of nitrogen in the media, arising from cell leakage. The suitability of four growth models to predict growth, and in some cases glycerol consumption, was evaluated. A simple linear model and the Emerson model performed poorly for the early stages of growth, while a modified Williams model and the Monod model predicted substrate and biomass concentrations equally well. All models will predict biomass concentrations during the active growth phase, but they should not be used to predict biomass concentrations after the stationary growth phase, when cell lysis becomes significant.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">8328805</PMID>
<DateCompleted>
<Year>1993</Year>
<Month>08</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0099-2240</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>59</Volume>
<Issue>6</Issue>
<PubDate>
<Year>1993</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Modelling the growth kinetics of Phanerochaete chrysosporium in submerged static culture.</ArticleTitle>
<Pagination>
<MedlinePgn>1887-92</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The potential commercial application of Phanerochaete chrysosporium requires methods for quantitatively predicting growth and substrate utilization. The growth kinetics of P. chrysosporium INA-12 (CNCM I-398) were investigated and modelled under nonlimiting nitrogen and carbon conditions in submerged static culture. This strain, unlike other strains, does not require nutrient limitation for induction of lignin peroxidase. Maximum levels of lignin peroxidase activity were reached 7 days after culture initiation, when almost 80% of the initial glycerol and 70% of the initial nitrogen were still present. Lignin peroxidase levels then decreased, while biomass levels increased until about day 14. The ratio of cell dry weight to wet weight was constant until the maximum biomass concentration was achieved, after which there was a decrease in the water content. The change in this ratio reflects cell lysis as it correlated with increased concentrations of nitrogen in the media, arising from cell leakage. The suitability of four growth models to predict growth, and in some cases glycerol consumption, was evaluated. A simple linear model and the Emerson model performed poorly for the early stages of growth, while a modified Williams model and the Monod model predicted substrate and biomass concentrations equally well. All models will predict biomass concentrations during the active growth phase, but they should not be used to predict biomass concentrations after the stationary growth phase, when cell lysis becomes significant.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Barclay</LastName>
<ForeName>C D</ForeName>
<Initials>CD</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, University of Waterloo, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Legge</LastName>
<ForeName>R L</ForeName>
<Initials>RL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Farquhar</LastName>
<ForeName>G F</ForeName>
<Initials>GF</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003470">Culture Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="C042858">lignin peroxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003470" MajorTopicYN="N">Culture Media</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004463" MajorTopicYN="Y">Ecology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1993</Year>
<Month>6</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1993</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1993</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">8328805</ArticleId>
<ArticleId IdType="pmc">PMC182176</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.59.6.1887-1892.1993</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 1985 Jun 21;228(4706):1434-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3925550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1989 Jan;55(1):154-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2705768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Apr;81(8):2280-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 1967 May;15(2):190-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6032798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1978 Sep;135(3):790-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">690075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1950 Sep;60(3):221-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14774340</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E07 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000E07 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:8328805
   |texte=   Modelling the growth kinetics of Phanerochaete chrysosporium in submerged static culture.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:8328805" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020