Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lignin peroxidases can also oxidize manganese.

Identifieur interne : 000D03 ( Main/Corpus ); précédent : 000D02; suivant : 000D04

Lignin peroxidases can also oxidize manganese.

Auteurs : A. Khindaria ; D P Barr ; S D Aust

Source :

RBID : pubmed:7779824

English descriptors

Abstract

The peroxidase isozymes secreted by the white rot fungus Phanerochaete chrysosporium include lignin peroxidases and manganese-dependent peroxidases. The major isozymes, called lignin peroxidases, are thought to oxidize chemicals directly. The manganese-dependent peroxidases (H3, H4, H5, and H9) are relatively minor, making up only a fraction of the total peroxidase protein. However, we have found that lignin peroxidases will also catalyze the H2O2-dependent oxidation of Mn2+ to Mn3+. We have used lignin peroxidase isozyme H2 (LiPH2) to characterize the manganese peroxidase activity of lignin peroxidases. Transient state kinetic studies were used to obtain a second-order rate constant of 4.2 x 10(4) M-1 S-1 for the reaction of LiPH2-compound I with free or chelated Mn2+ at pH 6.0. This reaction was too fast to monitor at pH 4.5. Only chelated Mn2+ could reduce LiPH2-compound II to ferric enzyme. The Mn(2+)-chelate (oxalate) first bound LiPH2-compound II with a Kd of (1.5 +/- 0.3) x 10(-5) M and then reduced LiPH2-compound II to ferric enzyme with a first order rate constant of 215 +/- 6 S-1. Steady-state kinetic studies on LiPH2 were performed by directly monitoring the formation of Mn(3+)-oxalate. These results show that oxidation of Mn2+ by a lignin peroxidase does not occur through free radical mediation as proposed previously [Popp et al. (1990) Biochemistry 29, 10475-10480). Electron spin resonance and oxygen evolution studies also indicate that Mn2+ is directly oxidized by LiPH2.(ABSTRACT TRUNCATED AT 250 WORDS)

DOI: 10.1021/bi00023a025
PubMed: 7779824

Links to Exploration step

pubmed:7779824

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lignin peroxidases can also oxidize manganese.</title>
<author>
<name sortKey="Khindaria, A" sort="Khindaria, A" uniqKey="Khindaria A" first="A" last="Khindaria">A. Khindaria</name>
<affiliation>
<nlm:affiliation>Biotechnology Center, Utah State University, Logan 84322-4705, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barr, D P" sort="Barr, D P" uniqKey="Barr D" first="D P" last="Barr">D P Barr</name>
</author>
<author>
<name sortKey="Aust, S D" sort="Aust, S D" uniqKey="Aust S" first="S D" last="Aust">S D Aust</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1995">1995</date>
<idno type="RBID">pubmed:7779824</idno>
<idno type="pmid">7779824</idno>
<idno type="doi">10.1021/bi00023a025</idno>
<idno type="wicri:Area/Main/Corpus">000D03</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D03</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lignin peroxidases can also oxidize manganese.</title>
<author>
<name sortKey="Khindaria, A" sort="Khindaria, A" uniqKey="Khindaria A" first="A" last="Khindaria">A. Khindaria</name>
<affiliation>
<nlm:affiliation>Biotechnology Center, Utah State University, Logan 84322-4705, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barr, D P" sort="Barr, D P" uniqKey="Barr D" first="D P" last="Barr">D P Barr</name>
</author>
<author>
<name sortKey="Aust, S D" sort="Aust, S D" uniqKey="Aust S" first="S D" last="Aust">S D Aust</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<imprint>
<date when="1995" type="published">1995</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (enzymology)</term>
<term>Benzyl Alcohols (metabolism)</term>
<term>Electron Spin Resonance Spectroscopy (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Manganese (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Peroxidases (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Benzyl Alcohols</term>
<term>Manganese</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electron Spin Resonance Spectroscopy</term>
<term>Kinetics</term>
<term>Oxidation-Reduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The peroxidase isozymes secreted by the white rot fungus Phanerochaete chrysosporium include lignin peroxidases and manganese-dependent peroxidases. The major isozymes, called lignin peroxidases, are thought to oxidize chemicals directly. The manganese-dependent peroxidases (H3, H4, H5, and H9) are relatively minor, making up only a fraction of the total peroxidase protein. However, we have found that lignin peroxidases will also catalyze the H2O2-dependent oxidation of Mn2+ to Mn3+. We have used lignin peroxidase isozyme H2 (LiPH2) to characterize the manganese peroxidase activity of lignin peroxidases. Transient state kinetic studies were used to obtain a second-order rate constant of 4.2 x 10(4) M-1 S-1 for the reaction of LiPH2-compound I with free or chelated Mn2+ at pH 6.0. This reaction was too fast to monitor at pH 4.5. Only chelated Mn2+ could reduce LiPH2-compound II to ferric enzyme. The Mn(2+)-chelate (oxalate) first bound LiPH2-compound II with a Kd of (1.5 +/- 0.3) x 10(-5) M and then reduced LiPH2-compound II to ferric enzyme with a first order rate constant of 215 +/- 6 S-1. Steady-state kinetic studies on LiPH2 were performed by directly monitoring the formation of Mn(3+)-oxalate. These results show that oxidation of Mn2+ by a lignin peroxidase does not occur through free radical mediation as proposed previously [Popp et al. (1990) Biochemistry 29, 10475-10480). Electron spin resonance and oxygen evolution studies also indicate that Mn2+ is directly oxidized by LiPH2.(ABSTRACT TRUNCATED AT 250 WORDS)</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">7779824</PMID>
<DateCompleted>
<Year>1995</Year>
<Month>07</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-2960</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>34</Volume>
<Issue>23</Issue>
<PubDate>
<Year>1995</Year>
<Month>Jun</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Lignin peroxidases can also oxidize manganese.</ArticleTitle>
<Pagination>
<MedlinePgn>7773-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The peroxidase isozymes secreted by the white rot fungus Phanerochaete chrysosporium include lignin peroxidases and manganese-dependent peroxidases. The major isozymes, called lignin peroxidases, are thought to oxidize chemicals directly. The manganese-dependent peroxidases (H3, H4, H5, and H9) are relatively minor, making up only a fraction of the total peroxidase protein. However, we have found that lignin peroxidases will also catalyze the H2O2-dependent oxidation of Mn2+ to Mn3+. We have used lignin peroxidase isozyme H2 (LiPH2) to characterize the manganese peroxidase activity of lignin peroxidases. Transient state kinetic studies were used to obtain a second-order rate constant of 4.2 x 10(4) M-1 S-1 for the reaction of LiPH2-compound I with free or chelated Mn2+ at pH 6.0. This reaction was too fast to monitor at pH 4.5. Only chelated Mn2+ could reduce LiPH2-compound II to ferric enzyme. The Mn(2+)-chelate (oxalate) first bound LiPH2-compound II with a Kd of (1.5 +/- 0.3) x 10(-5) M and then reduced LiPH2-compound II to ferric enzyme with a first order rate constant of 215 +/- 6 S-1. Steady-state kinetic studies on LiPH2 were performed by directly monitoring the formation of Mn(3+)-oxalate. These results show that oxidation of Mn2+ by a lignin peroxidase does not occur through free radical mediation as proposed previously [Popp et al. (1990) Biochemistry 29, 10475-10480). Electron spin resonance and oxygen evolution studies also indicate that Mn2+ is directly oxidized by LiPH2.(ABSTRACT TRUNCATED AT 250 WORDS)</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Khindaria</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Biotechnology Center, Utah State University, Logan 84322-4705, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barr</LastName>
<ForeName>D P</ForeName>
<Initials>DP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Aust</LastName>
<ForeName>S D</ForeName>
<Initials>SD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>ES04922</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001592">Benzyl Alcohols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42Z2K6ZL8P</RegistryNumber>
<NameOfSubstance UI="D008345">Manganese</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="C042858">lignin peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>MB4T4A711H</RegistryNumber>
<NameOfSubstance UI="C042197">veratryl alcohol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001592" MajorTopicYN="N">Benzyl Alcohols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004578" MajorTopicYN="N">Electron Spin Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008345" MajorTopicYN="N">Manganese</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1995</Year>
<Month>6</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1995</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1995</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">7779824</ArticleId>
<ArticleId IdType="doi">10.1021/bi00023a025</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D03 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000D03 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:7779824
   |texte=   Lignin peroxidases can also oxidize manganese.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:7779824" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020