Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Systematic identification and evolutionary analysis of catalytically versatile cytochrome p450 monooxygenase families enriched in model basidiomycete fungi.

Identifieur interne : 000334 ( Main/Corpus ); précédent : 000333; suivant : 000335

Systematic identification and evolutionary analysis of catalytically versatile cytochrome p450 monooxygenase families enriched in model basidiomycete fungi.

Auteurs : Khajamohiddin Syed ; Karabo Shale ; Nataraj Sekhar Pagadala ; Jack Tuszynski

Source :

RBID : pubmed:24466198

English descriptors

Abstract

Genome sequencing of basidiomycetes, a group of fungi capable of degrading/mineralizing plant material, revealed the presence of numerous cytochrome P450 monooxygenases (P450s) in their genomes, with some exceptions. Considering the large repertoire of P450s found in fungi, it is difficult to identify P450s that play an important role in fungal metabolism and the adaptation of fungi to diverse ecological niches. In this study, we followed Sir Charles Darwin's theory of natural selection to identify such P450s in model basidiomycete fungi showing a preference for different types of plant components degradation. Any P450 family comprising a large number of member P450s compared to other P450 families indicates its natural selection over other P450 families by its important role in fungal physiology. Genome-wide comparative P450 analysis in the basidiomycete species, Phanerochaete chrysosporium, Phanerochaete carnosa, Agaricus bisporus, Postia placenta, Ganoderma sp. and Serpula lacrymans, revealed enrichment of 11 P450 families (out of 68 P450 families), CYP63, CYP512, CYP5035, CYP5037, CYP5136, CYP5141, CYP5144, CYP5146, CYP5150, CYP5348 and CYP5359. Phylogenetic analysis of the P450 family showed species-specific alignment of P450s across the P450 families with the exception of P450s of Phanerochaete chrysosporium and Phanerochaete carnosa, suggesting paralogous evolution of P450s in model basidiomycetes. P450 gene-structure analysis revealed high conservation in the size of exons and the location of introns. P450s with the same gene structure were found tandemly arranged in the genomes of selected fungi. This clearly suggests that extensive gene duplications, particularly tandem gene duplications, led to the enrichment of selective P450 families in basidiomycetes. Functional analysis and gene expression profiling data suggest that members of the P450 families are catalytically versatile and possibly involved in fungal colonization of plant material. To our knowledge, this is the first report on the identification and comparative-evolutionary analysis of P450 families enriched in model basidiomycetes.

DOI: 10.1371/journal.pone.0086683
PubMed: 24466198
PubMed Central: PMC3899305

Links to Exploration step

pubmed:24466198

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Systematic identification and evolutionary analysis of catalytically versatile cytochrome p450 monooxygenase families enriched in model basidiomycete fungi.</title>
<author>
<name sortKey="Syed, Khajamohiddin" sort="Syed, Khajamohiddin" uniqKey="Syed K" first="Khajamohiddin" last="Syed">Khajamohiddin Syed</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shale, Karabo" sort="Shale, Karabo" uniqKey="Shale K" first="Karabo" last="Shale">Karabo Shale</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pagadala, Nataraj Sekhar" sort="Pagadala, Nataraj Sekhar" uniqKey="Pagadala N" first="Nataraj Sekhar" last="Pagadala">Nataraj Sekhar Pagadala</name>
<affiliation>
<nlm:affiliation>Department of Chemical Engineering, University of Alberta, Edmonton, Alberta, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tuszynski, Jack" sort="Tuszynski, Jack" uniqKey="Tuszynski J" first="Jack" last="Tuszynski">Jack Tuszynski</name>
<affiliation>
<nlm:affiliation>Department of Physics, University of Alberta, Edmonton, Alberta, Canada.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24466198</idno>
<idno type="pmid">24466198</idno>
<idno type="doi">10.1371/journal.pone.0086683</idno>
<idno type="pmc">PMC3899305</idno>
<idno type="wicri:Area/Main/Corpus">000334</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000334</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Systematic identification and evolutionary analysis of catalytically versatile cytochrome p450 monooxygenase families enriched in model basidiomycete fungi.</title>
<author>
<name sortKey="Syed, Khajamohiddin" sort="Syed, Khajamohiddin" uniqKey="Syed K" first="Khajamohiddin" last="Syed">Khajamohiddin Syed</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shale, Karabo" sort="Shale, Karabo" uniqKey="Shale K" first="Karabo" last="Shale">Karabo Shale</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pagadala, Nataraj Sekhar" sort="Pagadala, Nataraj Sekhar" uniqKey="Pagadala N" first="Nataraj Sekhar" last="Pagadala">Nataraj Sekhar Pagadala</name>
<affiliation>
<nlm:affiliation>Department of Chemical Engineering, University of Alberta, Edmonton, Alberta, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tuszynski, Jack" sort="Tuszynski, Jack" uniqKey="Tuszynski J" first="Jack" last="Tuszynski">Jack Tuszynski</name>
<affiliation>
<nlm:affiliation>Department of Physics, University of Alberta, Edmonton, Alberta, Canada.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (classification)</term>
<term>Basidiomycota (genetics)</term>
<term>Basidiomycota (metabolism)</term>
<term>Catalysis (MeSH)</term>
<term>Cytochrome P-450 Enzyme System (genetics)</term>
<term>Cytochrome P-450 Enzyme System (metabolism)</term>
<term>Databases, Genetic (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Duplication (MeSH)</term>
<term>Genome, Fungal (MeSH)</term>
<term>Genome-Wide Association Study (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cytochrome P-450 Enzyme System</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Basidiomycota</term>
<term>Cytochrome P-450 Enzyme System</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalysis</term>
<term>Databases, Genetic</term>
<term>Evolution, Molecular</term>
<term>Gene Duplication</term>
<term>Genome, Fungal</term>
<term>Genome-Wide Association Study</term>
<term>Multigene Family</term>
<term>Oxidation-Reduction</term>
<term>Phylogeny</term>
<term>Substrate Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Genome sequencing of basidiomycetes, a group of fungi capable of degrading/mineralizing plant material, revealed the presence of numerous cytochrome P450 monooxygenases (P450s) in their genomes, with some exceptions. Considering the large repertoire of P450s found in fungi, it is difficult to identify P450s that play an important role in fungal metabolism and the adaptation of fungi to diverse ecological niches. In this study, we followed Sir Charles Darwin's theory of natural selection to identify such P450s in model basidiomycete fungi showing a preference for different types of plant components degradation. Any P450 family comprising a large number of member P450s compared to other P450 families indicates its natural selection over other P450 families by its important role in fungal physiology. Genome-wide comparative P450 analysis in the basidiomycete species, Phanerochaete chrysosporium, Phanerochaete carnosa, Agaricus bisporus, Postia placenta, Ganoderma sp. and Serpula lacrymans, revealed enrichment of 11 P450 families (out of 68 P450 families), CYP63, CYP512, CYP5035, CYP5037, CYP5136, CYP5141, CYP5144, CYP5146, CYP5150, CYP5348 and CYP5359. Phylogenetic analysis of the P450 family showed species-specific alignment of P450s across the P450 families with the exception of P450s of Phanerochaete chrysosporium and Phanerochaete carnosa, suggesting paralogous evolution of P450s in model basidiomycetes. P450 gene-structure analysis revealed high conservation in the size of exons and the location of introns. P450s with the same gene structure were found tandemly arranged in the genomes of selected fungi. This clearly suggests that extensive gene duplications, particularly tandem gene duplications, led to the enrichment of selective P450 families in basidiomycetes. Functional analysis and gene expression profiling data suggest that members of the P450 families are catalytically versatile and possibly involved in fungal colonization of plant material. To our knowledge, this is the first report on the identification and comparative-evolutionary analysis of P450 families enriched in model basidiomycetes. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24466198</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>11</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Systematic identification and evolutionary analysis of catalytically versatile cytochrome p450 monooxygenase families enriched in model basidiomycete fungi.</ArticleTitle>
<Pagination>
<MedlinePgn>e86683</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0086683</ELocationID>
<Abstract>
<AbstractText>Genome sequencing of basidiomycetes, a group of fungi capable of degrading/mineralizing plant material, revealed the presence of numerous cytochrome P450 monooxygenases (P450s) in their genomes, with some exceptions. Considering the large repertoire of P450s found in fungi, it is difficult to identify P450s that play an important role in fungal metabolism and the adaptation of fungi to diverse ecological niches. In this study, we followed Sir Charles Darwin's theory of natural selection to identify such P450s in model basidiomycete fungi showing a preference for different types of plant components degradation. Any P450 family comprising a large number of member P450s compared to other P450 families indicates its natural selection over other P450 families by its important role in fungal physiology. Genome-wide comparative P450 analysis in the basidiomycete species, Phanerochaete chrysosporium, Phanerochaete carnosa, Agaricus bisporus, Postia placenta, Ganoderma sp. and Serpula lacrymans, revealed enrichment of 11 P450 families (out of 68 P450 families), CYP63, CYP512, CYP5035, CYP5037, CYP5136, CYP5141, CYP5144, CYP5146, CYP5150, CYP5348 and CYP5359. Phylogenetic analysis of the P450 family showed species-specific alignment of P450s across the P450 families with the exception of P450s of Phanerochaete chrysosporium and Phanerochaete carnosa, suggesting paralogous evolution of P450s in model basidiomycetes. P450 gene-structure analysis revealed high conservation in the size of exons and the location of introns. P450s with the same gene structure were found tandemly arranged in the genomes of selected fungi. This clearly suggests that extensive gene duplications, particularly tandem gene duplications, led to the enrichment of selective P450 families in basidiomycetes. Functional analysis and gene expression profiling data suggest that members of the P450 families are catalytically versatile and possibly involved in fungal colonization of plant material. To our knowledge, this is the first report on the identification and comparative-evolutionary analysis of P450 families enriched in model basidiomycetes. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Syed</LastName>
<ForeName>Khajamohiddin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shale</LastName>
<ForeName>Karabo</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pagadala</LastName>
<ForeName>Nataraj Sekhar</ForeName>
<Initials>NS</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, University of Alberta, Edmonton, Alberta, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tuszynski</LastName>
<ForeName>Jack</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Physics, University of Alberta, Edmonton, Alberta, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>01</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>9035-51-2</RegistryNumber>
<NameOfSubstance UI="D003577">Cytochrome P-450 Enzyme System</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003577" MajorTopicYN="N">Cytochrome P-450 Enzyme System</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="N">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="N">Gene Duplication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016681" MajorTopicYN="N">Genome, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055106" MajorTopicYN="N">Genome-Wide Association Study</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="Y">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>10</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>12</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24466198</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0086683</ArticleId>
<ArticleId IdType="pii">PONE-D-13-43760</ArticleId>
<ArticleId IdType="pmc">PMC3899305</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 May 8;98(10):5838-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11320210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2011 May 1;509(1):26-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21376009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Endocrinol. 2004 Feb 27;215(1-2):165-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15026190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jun;22(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA. 1987 Feb;6(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3829886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1989 Mar 15;76(1):121-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2663647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health Perspect. 1995 Jun;103 Suppl 5:25-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8565903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1996 Mar;119(3):435-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8830036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Apr 11;272(15):9986-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9092539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Feb 25;307(5713):1321-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Jun;71(6):3192-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15933021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Microbiol. 2005 Sep;8(3):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2005 Dec;274(5):454-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16231151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jan 27;311(5760):484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16439654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AAPS J. 2006;8(1):E101-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16584116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2006 Jun 25;124(1):128-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16516322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2006 Jul;24(7):324-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16759725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2006 Dec 13;54(25):9398-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17147424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2007 Sep;71(9):2105-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17827683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2008 Oct;52(10):3718-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18663031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Dec;74(23):7252-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18849459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1954-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19193860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jun;75(12):4058-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2009 Aug;73(8):1722-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19661694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Genomics. 2009 Oct;4(1):59-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19951895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2010 Jan;147(1):117-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19819902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 May;77(10):3211-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21441342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Jul;77(13):4499-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21551287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 5;333(6043):762-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(12):e28286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22164262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2012 Feb 1;518(1):8-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22206618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2012 Apr;194(4):243-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21938516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5458-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22434909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2012;3:913</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22735441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 29;336(6089):1715-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Microbiol. 2012 Nov;38(4):339-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22624627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012;13:444</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22937793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23045686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012;13:525</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23033934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Jan;1834(1):205-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23009807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2013 Feb 19;368(1612):20120430</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23297353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2013 Feb 19;368(1612):20120476</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23297358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Apr;79(8):2692-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23416995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2013 Nov-Dec;105(6):1445-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23928414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2013 Nov-Dec;105(6):1350-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2010 Mar;86(2):773-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20201136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2010 Aug;87(5):1907-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20508934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Sep 3;399(4):492-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20674550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Jan;1814(1):29-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20619366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2011 Apr 1;407(1):118-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21362401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2002 May;1(5):359-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12120411</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000334 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000334 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24466198
   |texte=   Systematic identification and evolutionary analysis of catalytically versatile cytochrome p450 monooxygenase families enriched in model basidiomycete fungi.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24466198" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020