Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative examination of the olive mill wastewater biodegradation process by various wood-rot macrofungi.

Identifieur interne : 000311 ( Main/Corpus ); précédent : 000310; suivant : 000312

Comparative examination of the olive mill wastewater biodegradation process by various wood-rot macrofungi.

Auteurs : Georgios Koutrotsios ; Georgios I. Zervakis

Source :

RBID : pubmed:24987685

English descriptors

Abstract

Olive mill wastewater (OMW) constitutes a major cause of environmental pollution in olive-oil producing regions. Sixty wood-rot macrofungi assigned in 43 species were evaluated for their efficacy to colonize solidified OMW media at initially established optimal growth temperatures. Subsequently eight strains of the following species were qualified: Abortiporus biennis, Ganoderma carnosum, Hapalopilus croceus, Hericium erinaceus, Irpex lacteus, Phanerochaete chrysosporium, Pleurotus djamor, and P. pulmonarius. Fungal growth in OMW (25%v/v in water) resulted in marked reduction of total phenolic content, which was significantly correlated with the effluent's decolorization. A. biennis was the best performing strain (it decreased phenolics by 92% and color by 64%) followed by P. djamor and I. lacteus. Increase of plant seeds germination was less pronounced evidencing that phenolics are only partly responsible for OMW's phytotoxicity. Laccase production was highly correlated with all three biodegradation parameters for H. croceus, Ph. chrysosporium, and Pleurotus spp., and so were manganese-independent and manganese dependent peroxidases for A. biennis and I. lacteus. Monitoring of enzymes with respect to biomass production indicated that Pleurotus spp., H. croceus, and Ph. chrysosporium shared common patterns for all three activities. Moreover, generation of enzymes at the early biodegradation stages enhanced the efficiency of OMW treatment.

DOI: 10.1155/2014/482937
PubMed: 24987685
PubMed Central: PMC4060750

Links to Exploration step

pubmed:24987685

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative examination of the olive mill wastewater biodegradation process by various wood-rot macrofungi.</title>
<author>
<name sortKey="Koutrotsios, Georgios" sort="Koutrotsios, Georgios" uniqKey="Koutrotsios G" first="Georgios" last="Koutrotsios">Georgios Koutrotsios</name>
<affiliation>
<nlm:affiliation>Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zervakis, Georgios I" sort="Zervakis, Georgios I" uniqKey="Zervakis G" first="Georgios I" last="Zervakis">Georgios I. Zervakis</name>
<affiliation>
<nlm:affiliation>Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24987685</idno>
<idno type="pmid">24987685</idno>
<idno type="doi">10.1155/2014/482937</idno>
<idno type="pmc">PMC4060750</idno>
<idno type="wicri:Area/Main/Corpus">000311</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000311</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative examination of the olive mill wastewater biodegradation process by various wood-rot macrofungi.</title>
<author>
<name sortKey="Koutrotsios, Georgios" sort="Koutrotsios, Georgios" uniqKey="Koutrotsios G" first="Georgios" last="Koutrotsios">Georgios Koutrotsios</name>
<affiliation>
<nlm:affiliation>Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zervakis, Georgios I" sort="Zervakis, Georgios I" uniqKey="Zervakis G" first="Georgios I" last="Zervakis">Georgios I. Zervakis</name>
<affiliation>
<nlm:affiliation>Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BioMed research international</title>
<idno type="eISSN">2314-6141</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fungi (metabolism)</term>
<term>Olea (MeSH)</term>
<term>Olive Oil (MeSH)</term>
<term>Plant Oils (MeSH)</term>
<term>Waste Water (microbiology)</term>
<term>Water Microbiology (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="microbiology" xml:lang="en">
<term>Waste Water</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Olive Oil</term>
<term>Plant Oils</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Olea</term>
<term>Water Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Olive mill wastewater (OMW) constitutes a major cause of environmental pollution in olive-oil producing regions. Sixty wood-rot macrofungi assigned in 43 species were evaluated for their efficacy to colonize solidified OMW media at initially established optimal growth temperatures. Subsequently eight strains of the following species were qualified: Abortiporus biennis, Ganoderma carnosum, Hapalopilus croceus, Hericium erinaceus, Irpex lacteus, Phanerochaete chrysosporium, Pleurotus djamor, and P. pulmonarius. Fungal growth in OMW (25%v/v in water) resulted in marked reduction of total phenolic content, which was significantly correlated with the effluent's decolorization. A. biennis was the best performing strain (it decreased phenolics by 92% and color by 64%) followed by P. djamor and I. lacteus. Increase of plant seeds germination was less pronounced evidencing that phenolics are only partly responsible for OMW's phytotoxicity. Laccase production was highly correlated with all three biodegradation parameters for H. croceus, Ph. chrysosporium, and Pleurotus spp., and so were manganese-independent and manganese dependent peroxidases for A. biennis and I. lacteus. Monitoring of enzymes with respect to biomass production indicated that Pleurotus spp., H. croceus, and Ph. chrysosporium shared common patterns for all three activities. Moreover, generation of enzymes at the early biodegradation stages enhanced the efficiency of OMW treatment. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24987685</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2314-6141</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2014</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>BioMed research international</Title>
<ISOAbbreviation>Biomed Res Int</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative examination of the olive mill wastewater biodegradation process by various wood-rot macrofungi.</ArticleTitle>
<Pagination>
<MedlinePgn>482937</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1155/2014/482937</ELocationID>
<Abstract>
<AbstractText>Olive mill wastewater (OMW) constitutes a major cause of environmental pollution in olive-oil producing regions. Sixty wood-rot macrofungi assigned in 43 species were evaluated for their efficacy to colonize solidified OMW media at initially established optimal growth temperatures. Subsequently eight strains of the following species were qualified: Abortiporus biennis, Ganoderma carnosum, Hapalopilus croceus, Hericium erinaceus, Irpex lacteus, Phanerochaete chrysosporium, Pleurotus djamor, and P. pulmonarius. Fungal growth in OMW (25%v/v in water) resulted in marked reduction of total phenolic content, which was significantly correlated with the effluent's decolorization. A. biennis was the best performing strain (it decreased phenolics by 92% and color by 64%) followed by P. djamor and I. lacteus. Increase of plant seeds germination was less pronounced evidencing that phenolics are only partly responsible for OMW's phytotoxicity. Laccase production was highly correlated with all three biodegradation parameters for H. croceus, Ph. chrysosporium, and Pleurotus spp., and so were manganese-independent and manganese dependent peroxidases for A. biennis and I. lacteus. Monitoring of enzymes with respect to biomass production indicated that Pleurotus spp., H. croceus, and Ph. chrysosporium shared common patterns for all three activities. Moreover, generation of enzymes at the early biodegradation stages enhanced the efficiency of OMW treatment. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Koutrotsios</LastName>
<ForeName>Georgios</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zervakis</LastName>
<ForeName>Georgios I</ForeName>
<Initials>GI</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biomed Res Int</MedlineTA>
<NlmUniqueID>101600173</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000069463">Olive Oil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010938">Plant Oils</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D062065">Waste Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031658" MajorTopicYN="Y">Olea</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069463" MajorTopicYN="N">Olive Oil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010938" MajorTopicYN="Y">Plant Oils</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062065" MajorTopicYN="N">Waste Water</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014871" MajorTopicYN="Y">Water Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>02</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>04</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>05</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24987685</ArticleId>
<ArticleId IdType="doi">10.1155/2014/482937</ArticleId>
<ArticleId IdType="pmc">PMC4060750</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Lett Appl Microbiol. 2007 Sep;45(3):270-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17718838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2006 Oct;97(15):1828-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16236495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2001 May;35(7):1828-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11329685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Jul 1;64(7):2726-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9647858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2002 Sep;84(3):251-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12118702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2003 Sep;37(16):3897-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12909108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2003 Feb 12;51(4):1005-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12568563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Folia Microbiol (Praha). 2006;51(4):337-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17007439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2003 Mar;50(8):959-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12531700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1990 Jul 2;267(1):99-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2365094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Res Int. 2013;2013:546830</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24027758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Res Int. 2013;2013:784591</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24199199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Res Microbiol. 2004 Sep;155(7):596-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15313262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2013 Jul;92(4):399-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23399310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2002 Aug 7;97(2):125-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12067519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2006 Mar;30(2):215-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16472305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Microbiol. 2005 Sep;8(3):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2009 Sep 30;169(1-3):673-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19457611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2008 May;99(7):2419-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17604163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biodegradation. 2009 Nov;20(6):845-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19603274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2012 Jul;88(5):620-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22480939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2006 Mar;62(9):1421-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16038961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2004 Mar;92(1):7-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14643980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1980 Jul 1;105(2):389-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7457843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2002 May-Jun;18(3):660-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12052089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2003 Dec;25(23):2013-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14719815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):349-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18359268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2002 Jul;59(2-3):353-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12111170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 1998 May 13;61(3):209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9684339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Folia Microbiol (Praha). 2001;46(3):231-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11702409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2008 Jan;99(1):164-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17239585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biodegradation. 2006 Feb;17(1):93-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16453175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2014 Jan 20;170:50-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24316440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1987;41:465-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3318677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2001 Oct;57(1-2):221-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11693925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Environ Contam Toxicol. 2001 Sep;67(3):352-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11479664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2002 Nov;36(19):4735-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12448515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biodegradation. 2007 Oct;18(5):559-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17103247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2006;161(2):93-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16427511</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000311 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000311 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24987685
   |texte=   Comparative examination of the olive mill wastewater biodegradation process by various wood-rot macrofungi.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24987685" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020