Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Vault Nanoparticles Packaged with Enzymes as an Efficient Pollutant Biodegradation Technology.

Identifieur interne : 000235 ( Main/Corpus ); précédent : 000234; suivant : 000236

Vault Nanoparticles Packaged with Enzymes as an Efficient Pollutant Biodegradation Technology.

Auteurs : Meng Wang ; Danny Abad ; Valerie A. Kickhoefer ; Leonard H. Rome ; Shaily Mahendra

Source :

RBID : pubmed:26493711

English descriptors

Abstract

Vault nanoparticles packaged with enzymes were synthesized as agents for efficiently degrading environmental contaminants. Enzymatic biodegradation is an attractive technology for in situ cleanup of contaminated environments because enzyme-catalyzed reactions are not constrained by nutrient requirements for microbial growth and often have higher biodegradation rates. However, the limited stability of extracellular enzymes remains a major challenge for practical applications. Encapsulation is a recognized method to enhance enzymatic stability, but it can increase substrate diffusion resistance, lower catalytic rates, and increase the apparent half-saturation constants. Here, we report an effective approach for boosting enzymatic stability by single-step packaging into vault nanoparticles. With hollow core structures, assembled vault nanoparticles can simultaneously contain multiple enzymes. Manganese peroxidase (MnP), which is widely used in biodegradation of organic contaminants, was chosen as a model enzyme in the present study. MnP was incorporated into vaults via fusion to a packaging domain called INT, which strongly interacts with vaults' interior surface. MnP fused to INT and vaults packaged with the MnP-INT fusion protein maintained peroxidase activity. Furthermore, MnP-INT packaged in vaults displayed stability significantly higher than that of free MnP-INT, with slightly increased Km value. Additionally, vault-packaged MnP-INT exhibited 3 times higher phenol biodegradation in 24 h than did unpackaged MnP-INT. These results indicate that the packaging of MnP enzymes in vault nanoparticles extends their stability without compromising catalytic activity. This research will serve as the foundation for the development of efficient and sustainable vault-based bioremediation approaches for removing multiple contaminants from drinking water and groundwater.

DOI: 10.1021/acsnano.5b04073
PubMed: 26493711

Links to Exploration step

pubmed:26493711

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Vault Nanoparticles Packaged with Enzymes as an Efficient Pollutant Biodegradation Technology.</title>
<author>
<name sortKey="Wang, Meng" sort="Wang, Meng" uniqKey="Wang M" first="Meng" last="Wang">Meng Wang</name>
<affiliation>
<nlm:affiliation>Department of Civil and Environmental Engineering, ‡Department of Biological Chemistry, and §California NanoSystems Institute, University of California , Los Angeles, California 90095, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Abad, Danny" sort="Abad, Danny" uniqKey="Abad D" first="Danny" last="Abad">Danny Abad</name>
<affiliation>
<nlm:affiliation>Department of Civil and Environmental Engineering, ‡Department of Biological Chemistry, and §California NanoSystems Institute, University of California , Los Angeles, California 90095, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kickhoefer, Valerie A" sort="Kickhoefer, Valerie A" uniqKey="Kickhoefer V" first="Valerie A" last="Kickhoefer">Valerie A. Kickhoefer</name>
<affiliation>
<nlm:affiliation>Department of Civil and Environmental Engineering, ‡Department of Biological Chemistry, and §California NanoSystems Institute, University of California , Los Angeles, California 90095, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rome, Leonard H" sort="Rome, Leonard H" uniqKey="Rome L" first="Leonard H" last="Rome">Leonard H. Rome</name>
<affiliation>
<nlm:affiliation>Department of Civil and Environmental Engineering, ‡Department of Biological Chemistry, and §California NanoSystems Institute, University of California , Los Angeles, California 90095, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mahendra, Shaily" sort="Mahendra, Shaily" uniqKey="Mahendra S" first="Shaily" last="Mahendra">Shaily Mahendra</name>
<affiliation>
<nlm:affiliation>Department of Civil and Environmental Engineering, ‡Department of Biological Chemistry, and §California NanoSystems Institute, University of California , Los Angeles, California 90095, United States.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26493711</idno>
<idno type="pmid">26493711</idno>
<idno type="doi">10.1021/acsnano.5b04073</idno>
<idno type="wicri:Area/Main/Corpus">000235</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000235</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Vault Nanoparticles Packaged with Enzymes as an Efficient Pollutant Biodegradation Technology.</title>
<author>
<name sortKey="Wang, Meng" sort="Wang, Meng" uniqKey="Wang M" first="Meng" last="Wang">Meng Wang</name>
<affiliation>
<nlm:affiliation>Department of Civil and Environmental Engineering, ‡Department of Biological Chemistry, and §California NanoSystems Institute, University of California , Los Angeles, California 90095, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Abad, Danny" sort="Abad, Danny" uniqKey="Abad D" first="Danny" last="Abad">Danny Abad</name>
<affiliation>
<nlm:affiliation>Department of Civil and Environmental Engineering, ‡Department of Biological Chemistry, and §California NanoSystems Institute, University of California , Los Angeles, California 90095, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kickhoefer, Valerie A" sort="Kickhoefer, Valerie A" uniqKey="Kickhoefer V" first="Valerie A" last="Kickhoefer">Valerie A. Kickhoefer</name>
<affiliation>
<nlm:affiliation>Department of Civil and Environmental Engineering, ‡Department of Biological Chemistry, and §California NanoSystems Institute, University of California , Los Angeles, California 90095, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rome, Leonard H" sort="Rome, Leonard H" uniqKey="Rome L" first="Leonard H" last="Rome">Leonard H. Rome</name>
<affiliation>
<nlm:affiliation>Department of Civil and Environmental Engineering, ‡Department of Biological Chemistry, and §California NanoSystems Institute, University of California , Los Angeles, California 90095, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mahendra, Shaily" sort="Mahendra, Shaily" uniqKey="Mahendra S" first="Shaily" last="Mahendra">Shaily Mahendra</name>
<affiliation>
<nlm:affiliation>Department of Civil and Environmental Engineering, ‡Department of Biological Chemistry, and §California NanoSystems Institute, University of California , Los Angeles, California 90095, United States.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">ACS nano</title>
<idno type="eISSN">1936-086X</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biocatalysis (MeSH)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Environmental Pollutants (isolation & purification)</term>
<term>Enzyme Stability (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Nanoparticles (chemistry)</term>
<term>Nanoparticles (ultrastructure)</term>
<term>Nanotechnology (methods)</term>
<term>Peroxidases (chemistry)</term>
<term>Peroxidases (metabolism)</term>
<term>Phanerochaete (enzymology)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Vault Ribonucleoprotein Particles (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Peroxidases</term>
<term>Vault Ribonucleoprotein Particles</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Environmental Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peroxidases</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Nanotechnology</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biocatalysis</term>
<term>Biodegradation, Environmental</term>
<term>Enzyme Stability</term>
<term>Kinetics</term>
<term>Protein Structure, Tertiary</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Vault nanoparticles packaged with enzymes were synthesized as agents for efficiently degrading environmental contaminants. Enzymatic biodegradation is an attractive technology for in situ cleanup of contaminated environments because enzyme-catalyzed reactions are not constrained by nutrient requirements for microbial growth and often have higher biodegradation rates. However, the limited stability of extracellular enzymes remains a major challenge for practical applications. Encapsulation is a recognized method to enhance enzymatic stability, but it can increase substrate diffusion resistance, lower catalytic rates, and increase the apparent half-saturation constants. Here, we report an effective approach for boosting enzymatic stability by single-step packaging into vault nanoparticles. With hollow core structures, assembled vault nanoparticles can simultaneously contain multiple enzymes. Manganese peroxidase (MnP), which is widely used in biodegradation of organic contaminants, was chosen as a model enzyme in the present study. MnP was incorporated into vaults via fusion to a packaging domain called INT, which strongly interacts with vaults' interior surface. MnP fused to INT and vaults packaged with the MnP-INT fusion protein maintained peroxidase activity. Furthermore, MnP-INT packaged in vaults displayed stability significantly higher than that of free MnP-INT, with slightly increased Km value. Additionally, vault-packaged MnP-INT exhibited 3 times higher phenol biodegradation in 24 h than did unpackaged MnP-INT. These results indicate that the packaging of MnP enzymes in vault nanoparticles extends their stability without compromising catalytic activity. This research will serve as the foundation for the development of efficient and sustainable vault-based bioremediation approaches for removing multiple contaminants from drinking water and groundwater. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26493711</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>09</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>11</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1936-086X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2015</Year>
<Month>Nov</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>ACS nano</Title>
<ISOAbbreviation>ACS Nano</ISOAbbreviation>
</Journal>
<ArticleTitle>Vault Nanoparticles Packaged with Enzymes as an Efficient Pollutant Biodegradation Technology.</ArticleTitle>
<Pagination>
<MedlinePgn>10931-40</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acsnano.5b04073</ELocationID>
<Abstract>
<AbstractText>Vault nanoparticles packaged with enzymes were synthesized as agents for efficiently degrading environmental contaminants. Enzymatic biodegradation is an attractive technology for in situ cleanup of contaminated environments because enzyme-catalyzed reactions are not constrained by nutrient requirements for microbial growth and often have higher biodegradation rates. However, the limited stability of extracellular enzymes remains a major challenge for practical applications. Encapsulation is a recognized method to enhance enzymatic stability, but it can increase substrate diffusion resistance, lower catalytic rates, and increase the apparent half-saturation constants. Here, we report an effective approach for boosting enzymatic stability by single-step packaging into vault nanoparticles. With hollow core structures, assembled vault nanoparticles can simultaneously contain multiple enzymes. Manganese peroxidase (MnP), which is widely used in biodegradation of organic contaminants, was chosen as a model enzyme in the present study. MnP was incorporated into vaults via fusion to a packaging domain called INT, which strongly interacts with vaults' interior surface. MnP fused to INT and vaults packaged with the MnP-INT fusion protein maintained peroxidase activity. Furthermore, MnP-INT packaged in vaults displayed stability significantly higher than that of free MnP-INT, with slightly increased Km value. Additionally, vault-packaged MnP-INT exhibited 3 times higher phenol biodegradation in 24 h than did unpackaged MnP-INT. These results indicate that the packaging of MnP enzymes in vault nanoparticles extends their stability without compromising catalytic activity. This research will serve as the foundation for the development of efficient and sustainable vault-based bioremediation approaches for removing multiple contaminants from drinking water and groundwater. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Meng</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil and Environmental Engineering, ‡Department of Biological Chemistry, and §California NanoSystems Institute, University of California , Los Angeles, California 90095, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abad</LastName>
<ForeName>Danny</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil and Environmental Engineering, ‡Department of Biological Chemistry, and §California NanoSystems Institute, University of California , Los Angeles, California 90095, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kickhoefer</LastName>
<ForeName>Valerie A</ForeName>
<Initials>VA</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil and Environmental Engineering, ‡Department of Biological Chemistry, and §California NanoSystems Institute, University of California , Los Angeles, California 90095, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rome</LastName>
<ForeName>Leonard H</ForeName>
<Initials>LH</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil and Environmental Engineering, ‡Department of Biological Chemistry, and §California NanoSystems Institute, University of California , Los Angeles, California 90095, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mahendra</LastName>
<ForeName>Shaily</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil and Environmental Engineering, ‡Department of Biological Chemistry, and §California NanoSystems Institute, University of California , Los Angeles, California 90095, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>10</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Nano</MedlineTA>
<NlmUniqueID>101313589</NlmUniqueID>
<ISSNLinking>1936-0851</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004785">Environmental Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020394">Vault Ribonucleoprotein Particles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.13</RegistryNumber>
<NameOfSubstance UI="C051129">manganese peroxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055162" MajorTopicYN="N">Biocatalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004785" MajorTopicYN="N">Environmental Pollutants</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004795" MajorTopicYN="N">Enzyme Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053758" MajorTopicYN="N">Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036103" MajorTopicYN="N">Nanotechnology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020394" MajorTopicYN="N">Vault Ribonucleoprotein Particles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">biocatalyst</Keyword>
<Keyword MajorTopicYN="N">biotransformation</Keyword>
<Keyword MajorTopicYN="N">enzyme capsulation</Keyword>
<Keyword MajorTopicYN="N">fungal peroxidase</Keyword>
<Keyword MajorTopicYN="N">nanocapsule</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>9</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26493711</ArticleId>
<ArticleId IdType="doi">10.1021/acsnano.5b04073</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000235 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000235 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26493711
   |texte=   Vault Nanoparticles Packaged with Enzymes as an Efficient Pollutant Biodegradation Technology.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:26493711" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020