Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Exploring the Synergy between Cellobiose Dehydrogenase from Phanerochaete chrysosporium and Cellulase from Trichoderma reesei.

Identifieur interne : 000212 ( Main/Corpus ); précédent : 000211; suivant : 000213

Exploring the Synergy between Cellobiose Dehydrogenase from Phanerochaete chrysosporium and Cellulase from Trichoderma reesei.

Auteurs : Min Wang ; Xuefeng Lu

Source :

RBID : pubmed:27199949

Abstract

Recent demands for the production of lignocellulose biofuels boosted research on cellulase. Hydrolysis efficiency and production cost of cellulase are two bottlenecks in "biomass to biofuels" process. The Trichoderma cellulase mixture is one of the most commonly used enzymes for cellulosic hydrolysis. During hydrolytic process cellobiose accumulation causes feedback inhibition against most cellobiohydrolases and endoglucanases. In this study, we demonstrated the synergism effects between cellobiose dehydrogenase (CDH) and cellulase both in vitro and in vivo. The CDH from Phanerochaete chrysosporium was heterologously expressed in Pichia pastoris. Supplementation of the purified CDH in Trichoderma cellulase increased the cellulase activities. Especially β-glucosidase activity was increased by 30-100% varying at different time points. On the other hand, the cdh gene was heterologously expressed in Trichoderma reesei to explore the synergism between CDH and cellulases in vivo. The analyses of gene expression and enzymatic profiles of filter paper activity, carboxymethylcellulase (CMCase) and β-glucosidase show the increased cellulase activity and the enhanced cellulase production in the cdh-expressing strains. The results elucidate a possible mechanism for diminishing the cellobiose inhibition of cellulase by CDH. These findings provide a novel perspective to make more economic enzyme cocktails for commercial application or explore alternative strategies for generating cellulase-producing strains with higher efficiency.

DOI: 10.3389/fmicb.2016.00620
PubMed: 27199949
PubMed Central: PMC4850161

Links to Exploration step

pubmed:27199949

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Exploring the Synergy between Cellobiose Dehydrogenase from Phanerochaete chrysosporium and Cellulase from Trichoderma reesei.</title>
<author>
<name sortKey="Wang, Min" sort="Wang, Min" uniqKey="Wang M" first="Min" last="Wang">Min Wang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China; Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Xuefeng" sort="Lu, Xuefeng" uniqKey="Lu X" first="Xuefeng" last="Lu">Xuefeng Lu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China; Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27199949</idno>
<idno type="pmid">27199949</idno>
<idno type="doi">10.3389/fmicb.2016.00620</idno>
<idno type="pmc">PMC4850161</idno>
<idno type="wicri:Area/Main/Corpus">000212</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000212</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Exploring the Synergy between Cellobiose Dehydrogenase from Phanerochaete chrysosporium and Cellulase from Trichoderma reesei.</title>
<author>
<name sortKey="Wang, Min" sort="Wang, Min" uniqKey="Wang M" first="Min" last="Wang">Min Wang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China; Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Xuefeng" sort="Lu, Xuefeng" uniqKey="Lu X" first="Xuefeng" last="Lu">Xuefeng Lu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China; Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recent demands for the production of lignocellulose biofuels boosted research on cellulase. Hydrolysis efficiency and production cost of cellulase are two bottlenecks in "biomass to biofuels" process. The Trichoderma cellulase mixture is one of the most commonly used enzymes for cellulosic hydrolysis. During hydrolytic process cellobiose accumulation causes feedback inhibition against most cellobiohydrolases and endoglucanases. In this study, we demonstrated the synergism effects between cellobiose dehydrogenase (CDH) and cellulase both in vitro and in vivo. The CDH from Phanerochaete chrysosporium was heterologously expressed in Pichia pastoris. Supplementation of the purified CDH in Trichoderma cellulase increased the cellulase activities. Especially β-glucosidase activity was increased by 30-100% varying at different time points. On the other hand, the cdh gene was heterologously expressed in Trichoderma reesei to explore the synergism between CDH and cellulases in vivo. The analyses of gene expression and enzymatic profiles of filter paper activity, carboxymethylcellulase (CMCase) and β-glucosidase show the increased cellulase activity and the enhanced cellulase production in the cdh-expressing strains. The results elucidate a possible mechanism for diminishing the cellobiose inhibition of cellulase by CDH. These findings provide a novel perspective to make more economic enzyme cocktails for commercial application or explore alternative strategies for generating cellulase-producing strains with higher efficiency. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27199949</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Exploring the Synergy between Cellobiose Dehydrogenase from Phanerochaete chrysosporium and Cellulase from Trichoderma reesei.</ArticleTitle>
<Pagination>
<MedlinePgn>620</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2016.00620</ELocationID>
<Abstract>
<AbstractText>Recent demands for the production of lignocellulose biofuels boosted research on cellulase. Hydrolysis efficiency and production cost of cellulase are two bottlenecks in "biomass to biofuels" process. The Trichoderma cellulase mixture is one of the most commonly used enzymes for cellulosic hydrolysis. During hydrolytic process cellobiose accumulation causes feedback inhibition against most cellobiohydrolases and endoglucanases. In this study, we demonstrated the synergism effects between cellobiose dehydrogenase (CDH) and cellulase both in vitro and in vivo. The CDH from Phanerochaete chrysosporium was heterologously expressed in Pichia pastoris. Supplementation of the purified CDH in Trichoderma cellulase increased the cellulase activities. Especially β-glucosidase activity was increased by 30-100% varying at different time points. On the other hand, the cdh gene was heterologously expressed in Trichoderma reesei to explore the synergism between CDH and cellulases in vivo. The analyses of gene expression and enzymatic profiles of filter paper activity, carboxymethylcellulase (CMCase) and β-glucosidase show the increased cellulase activity and the enhanced cellulase production in the cdh-expressing strains. The results elucidate a possible mechanism for diminishing the cellobiose inhibition of cellulase by CDH. These findings provide a novel perspective to make more economic enzyme cocktails for commercial application or explore alternative strategies for generating cellulase-producing strains with higher efficiency. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Min</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China; Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Xuefeng</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China; Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>04</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Tritroderma reesei</Keyword>
<Keyword MajorTopicYN="N">cellobiose dehydrogenase</Keyword>
<Keyword MajorTopicYN="N">cellobiose inhibition</Keyword>
<Keyword MajorTopicYN="N">cellulase</Keyword>
<Keyword MajorTopicYN="N">synergy</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>02</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>04</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27199949</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2016.00620</ArticleId>
<ArticleId IdType="pmc">PMC4850161</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Microb Cell Fact. 2012 Oct 04;11:134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23035824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2004 Dec 30;88(7):797-824</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15538721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1983 Dec 1;215(3):677-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6419730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1990 Jul;36(3):275-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18595079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2011 Mar 9;59(5):1954-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21294581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2001 Apr;77(2):171-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11272024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2011 Dec 28;10:113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22204630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2004 Jun 1;235(1):177-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15158279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 2011 Sep 10;49(4):366-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22112562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 1999 Jan;15(1):91-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9933518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Sep 29;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2009 Sep 01;2:19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19723296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2007 Aug 1;97(5):1028-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17221887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1992 May 4;302(1):77-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1587358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2016 Jan;100(2):769-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26481618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24270786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Microbiol Immunol Hung. 2003;50(2-3):125-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12894484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2001 Sep;65(9):2050-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11676020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2012 Jan;109(1):92-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21830204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2012 Jan 02;5(1):1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22212435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e37010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22649505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2009 Sep;31(9):1399-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19479322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Dec 18;273(51):34463-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9852114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2012 Apr;109(4):1083-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22095526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2000 Mar 10;78(2):93-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2012 Apr 30;5(1):26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22546481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jun 22;474(7352):S2-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21697838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2012 May 20;11:63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22607229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Jul 11;9:327</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18620557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1998 Apr 1;253(1):101-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9578466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1974 Jul 15;46(2):295-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4854948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2012 Jul 02;5(1):45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22747961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2014 Aug;13(8):1001-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24879125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1978 Sep 15;90(1):171-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">710416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 May;26(5):553-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18454138</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000212 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000212 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27199949
   |texte=   Exploring the Synergy between Cellobiose Dehydrogenase from Phanerochaete chrysosporium and Cellulase from Trichoderma reesei.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:27199949" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020