Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Designer fungus FAD glucose dehydrogenase capable of direct electron transfer.

Identifieur interne : 000108 ( Main/Corpus ); précédent : 000107; suivant : 000109

Designer fungus FAD glucose dehydrogenase capable of direct electron transfer.

Auteurs : Kohei Ito ; Junko Okuda-Shimazaki ; Kazushige Mori ; Katsuhiro Kojima ; Wakako Tsugawa ; Kazunori Ikebukuro ; Chi-En Lin ; Jeffrey La Belle ; Hiromi Yoshida ; Koji Sode

Source :

RBID : pubmed:30057265

English descriptors

Abstract

Fungi-derived flavin adenine dinucleotide glucose dehydrogenases (FADGDHs) are currently the most popular and advanced enzymes for self-monitoring of blood glucose sensors; however, the achievement of direct electron transfer (DET) with FADGDHs is difficult. In this study, a designer FADGDH was constructed by fusing Aspergillus flavus derived FADGDH (AfGDH) and a Phanerochaete chrisosporium CDH (PcCDH)-derived heme b-binding cytochrome domain to develop a novel FADGDH that is capable of direct electron transfer with an electrode. A structural prediction suggested that the heme in the CDH may exist in proximity to the FAD of AfGDH if the heme b-binding cytochrome domain is fused to the AfGDH N-terminal region. Spectroscopic observations of recombinantly produced designer FADGDH confirmed the intramolecular electron transfer between FAD and the heme. A decrease in pH and the presence of a divalent cation improved the intramolecular electron transfer. An enzyme electrode with the immobilized designer FADGDH showed an increase in current immediately after the addition of glucose in a glucose concentration-dependent manner, whereas those with wild-type AfGDH did not show an increase in current. Therefore, the designer FADGDH was confirmed to be a novel GDH that possesses electrode DET ability. The difference in the surface electrostatic potentials of AfGDH and the catalytic domain of PcCDH might be why their intramolecular electron transfer ability is inferior to that of CDH. These relevant and consistent findings provide us with a novel strategic approach for the improvement of the DET properties of designer FADGDH. (241 words).

DOI: 10.1016/j.bios.2018.07.027
PubMed: 30057265

Links to Exploration step

pubmed:30057265

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Designer fungus FAD glucose dehydrogenase capable of direct electron transfer.</title>
<author>
<name sortKey="Ito, Kohei" sort="Ito, Kohei" uniqKey="Ito K" first="Kohei" last="Ito">Kohei Ito</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Okuda Shimazaki, Junko" sort="Okuda Shimazaki, Junko" uniqKey="Okuda Shimazaki J" first="Junko" last="Okuda-Shimazaki">Junko Okuda-Shimazaki</name>
<affiliation>
<nlm:affiliation>Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mori, Kazushige" sort="Mori, Kazushige" uniqKey="Mori K" first="Kazushige" last="Mori">Kazushige Mori</name>
<affiliation>
<nlm:affiliation>Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kojima, Katsuhiro" sort="Kojima, Katsuhiro" uniqKey="Kojima K" first="Katsuhiro" last="Kojima">Katsuhiro Kojima</name>
<affiliation>
<nlm:affiliation>Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tsugawa, Wakako" sort="Tsugawa, Wakako" uniqKey="Tsugawa W" first="Wakako" last="Tsugawa">Wakako Tsugawa</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ikebukuro, Kazunori" sort="Ikebukuro, Kazunori" uniqKey="Ikebukuro K" first="Kazunori" last="Ikebukuro">Kazunori Ikebukuro</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lin, Chi En" sort="Lin, Chi En" uniqKey="Lin C" first="Chi-En" last="Lin">Chi-En Lin</name>
<affiliation>
<nlm:affiliation>School of Biological and Health System Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287-9719, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="La Belle, Jeffrey" sort="La Belle, Jeffrey" uniqKey="La Belle J" first="Jeffrey" last="La Belle">Jeffrey La Belle</name>
<affiliation>
<nlm:affiliation>School of Biological and Health System Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287-9719, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yoshida, Hiromi" sort="Yoshida, Hiromi" uniqKey="Yoshida H" first="Hiromi" last="Yoshida">Hiromi Yoshida</name>
<affiliation>
<nlm:affiliation>Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sode, Koji" sort="Sode, Koji" uniqKey="Sode K" first="Koji" last="Sode">Koji Sode</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan; Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan; Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA. Electronic address: ksode@email.unc.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30057265</idno>
<idno type="pmid">30057265</idno>
<idno type="doi">10.1016/j.bios.2018.07.027</idno>
<idno type="wicri:Area/Main/Corpus">000108</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000108</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Designer fungus FAD glucose dehydrogenase capable of direct electron transfer.</title>
<author>
<name sortKey="Ito, Kohei" sort="Ito, Kohei" uniqKey="Ito K" first="Kohei" last="Ito">Kohei Ito</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Okuda Shimazaki, Junko" sort="Okuda Shimazaki, Junko" uniqKey="Okuda Shimazaki J" first="Junko" last="Okuda-Shimazaki">Junko Okuda-Shimazaki</name>
<affiliation>
<nlm:affiliation>Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mori, Kazushige" sort="Mori, Kazushige" uniqKey="Mori K" first="Kazushige" last="Mori">Kazushige Mori</name>
<affiliation>
<nlm:affiliation>Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kojima, Katsuhiro" sort="Kojima, Katsuhiro" uniqKey="Kojima K" first="Katsuhiro" last="Kojima">Katsuhiro Kojima</name>
<affiliation>
<nlm:affiliation>Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tsugawa, Wakako" sort="Tsugawa, Wakako" uniqKey="Tsugawa W" first="Wakako" last="Tsugawa">Wakako Tsugawa</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ikebukuro, Kazunori" sort="Ikebukuro, Kazunori" uniqKey="Ikebukuro K" first="Kazunori" last="Ikebukuro">Kazunori Ikebukuro</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lin, Chi En" sort="Lin, Chi En" uniqKey="Lin C" first="Chi-En" last="Lin">Chi-En Lin</name>
<affiliation>
<nlm:affiliation>School of Biological and Health System Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287-9719, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="La Belle, Jeffrey" sort="La Belle, Jeffrey" uniqKey="La Belle J" first="Jeffrey" last="La Belle">Jeffrey La Belle</name>
<affiliation>
<nlm:affiliation>School of Biological and Health System Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287-9719, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yoshida, Hiromi" sort="Yoshida, Hiromi" uniqKey="Yoshida H" first="Hiromi" last="Yoshida">Hiromi Yoshida</name>
<affiliation>
<nlm:affiliation>Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sode, Koji" sort="Sode, Koji" uniqKey="Sode K" first="Koji" last="Sode">Koji Sode</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan; Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan; Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA. Electronic address: ksode@email.unc.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biosensors & bioelectronics</title>
<idno type="eISSN">1873-4235</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aspergillus flavus (chemistry)</term>
<term>Aspergillus flavus (enzymology)</term>
<term>Biosensing Techniques (MeSH)</term>
<term>Blood Glucose (isolation & purification)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Electrodes (MeSH)</term>
<term>Electron Transport (MeSH)</term>
<term>Flavin-Adenine Dinucleotide (chemistry)</term>
<term>Glucose Dehydrogenases (chemistry)</term>
<term>Heme (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Flavin-Adenine Dinucleotide</term>
<term>Glucose Dehydrogenases</term>
<term>Heme</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Blood Glucose</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Aspergillus flavus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Aspergillus flavus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biosensing Techniques</term>
<term>Catalytic Domain</term>
<term>Electrodes</term>
<term>Electron Transport</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fungi-derived flavin adenine dinucleotide glucose dehydrogenases (FADGDHs) are currently the most popular and advanced enzymes for self-monitoring of blood glucose sensors; however, the achievement of direct electron transfer (DET) with FADGDHs is difficult. In this study, a designer FADGDH was constructed by fusing Aspergillus flavus derived FADGDH (AfGDH) and a Phanerochaete chrisosporium CDH (PcCDH)-derived heme b-binding cytochrome domain to develop a novel FADGDH that is capable of direct electron transfer with an electrode. A structural prediction suggested that the heme in the CDH may exist in proximity to the FAD of AfGDH if the heme b-binding cytochrome domain is fused to the AfGDH N-terminal region. Spectroscopic observations of recombinantly produced designer FADGDH confirmed the intramolecular electron transfer between FAD and the heme. A decrease in pH and the presence of a divalent cation improved the intramolecular electron transfer. An enzyme electrode with the immobilized designer FADGDH showed an increase in current immediately after the addition of glucose in a glucose concentration-dependent manner, whereas those with wild-type AfGDH did not show an increase in current. Therefore, the designer FADGDH was confirmed to be a novel GDH that possesses electrode DET ability. The difference in the surface electrostatic potentials of AfGDH and the catalytic domain of PcCDH might be why their intramolecular electron transfer ability is inferior to that of CDH. These relevant and consistent findings provide us with a novel strategic approach for the improvement of the DET properties of designer FADGDH. (241 words).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30057265</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>03</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-4235</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>123</Volume>
<PubDate>
<Year>2019</Year>
<Month>Jan</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Biosensors & bioelectronics</Title>
<ISOAbbreviation>Biosens Bioelectron</ISOAbbreviation>
</Journal>
<ArticleTitle>Designer fungus FAD glucose dehydrogenase capable of direct electron transfer.</ArticleTitle>
<Pagination>
<MedlinePgn>114-123</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0956-5663(18)30528-1</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bios.2018.07.027</ELocationID>
<Abstract>
<AbstractText>Fungi-derived flavin adenine dinucleotide glucose dehydrogenases (FADGDHs) are currently the most popular and advanced enzymes for self-monitoring of blood glucose sensors; however, the achievement of direct electron transfer (DET) with FADGDHs is difficult. In this study, a designer FADGDH was constructed by fusing Aspergillus flavus derived FADGDH (AfGDH) and a Phanerochaete chrisosporium CDH (PcCDH)-derived heme b-binding cytochrome domain to develop a novel FADGDH that is capable of direct electron transfer with an electrode. A structural prediction suggested that the heme in the CDH may exist in proximity to the FAD of AfGDH if the heme b-binding cytochrome domain is fused to the AfGDH N-terminal region. Spectroscopic observations of recombinantly produced designer FADGDH confirmed the intramolecular electron transfer between FAD and the heme. A decrease in pH and the presence of a divalent cation improved the intramolecular electron transfer. An enzyme electrode with the immobilized designer FADGDH showed an increase in current immediately after the addition of glucose in a glucose concentration-dependent manner, whereas those with wild-type AfGDH did not show an increase in current. Therefore, the designer FADGDH was confirmed to be a novel GDH that possesses electrode DET ability. The difference in the surface electrostatic potentials of AfGDH and the catalytic domain of PcCDH might be why their intramolecular electron transfer ability is inferior to that of CDH. These relevant and consistent findings provide us with a novel strategic approach for the improvement of the DET properties of designer FADGDH. (241 words).</AbstractText>
<CopyrightInformation>Copyright © 2018 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ito</LastName>
<ForeName>Kohei</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Okuda-Shimazaki</LastName>
<ForeName>Junko</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mori</LastName>
<ForeName>Kazushige</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kojima</LastName>
<ForeName>Katsuhiro</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tsugawa</LastName>
<ForeName>Wakako</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ikebukuro</LastName>
<ForeName>Kazunori</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Chi-En</ForeName>
<Initials>CE</Initials>
<AffiliationInfo>
<Affiliation>School of Biological and Health System Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287-9719, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>La Belle</LastName>
<ForeName>Jeffrey</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>School of Biological and Health System Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287-9719, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yoshida</LastName>
<ForeName>Hiromi</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sode</LastName>
<ForeName>Koji</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan; Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan; Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA. Electronic address: ksode@email.unc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>07</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biosens Bioelectron</MedlineTA>
<NlmUniqueID>9001289</NlmUniqueID>
<ISSNLinking>0956-5663</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>146-14-5</RegistryNumber>
<NameOfSubstance UI="D005182">Flavin-Adenine Dinucleotide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42VZT0U6YR</RegistryNumber>
<NameOfSubstance UI="D006418">Heme</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.1.-</RegistryNumber>
<NameOfSubstance UI="D005948">Glucose Dehydrogenases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001231" MajorTopicYN="N">Aspergillus flavus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015374" MajorTopicYN="Y">Biosensing Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004566" MajorTopicYN="N">Electrodes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005182" MajorTopicYN="N">Flavin-Adenine Dinucleotide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005948" MajorTopicYN="N">Glucose Dehydrogenases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006418" MajorTopicYN="N">Heme</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cellobiose dehydrogenase</Keyword>
<Keyword MajorTopicYN="N">Designer FADGDH</Keyword>
<Keyword MajorTopicYN="N">Direct electron transfer</Keyword>
<Keyword MajorTopicYN="N">Fusion protein</Keyword>
<Keyword MajorTopicYN="N">Glucose dehydrogenase</Keyword>
<Keyword MajorTopicYN="N">Heme b-binding cytochrome domain</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>07</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>07</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30057265</ArticleId>
<ArticleId IdType="pii">S0956-5663(18)30528-1</ArticleId>
<ArticleId IdType="doi">10.1016/j.bios.2018.07.027</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000108 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000108 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30057265
   |texte=   Designer fungus FAD glucose dehydrogenase capable of direct electron transfer.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30057265" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020