Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Usage of microbial combination degradation technology for the remediation of uranium contaminated ryegrass.

Identifieur interne : 000006 ( Main/Corpus ); précédent : 000005; suivant : 000007

Usage of microbial combination degradation technology for the remediation of uranium contaminated ryegrass.

Auteurs : Luhuai Jing ; Xianghui Zhang ; Imran Ali ; Xiaoming Chen ; Li Wang ; Hao Chen ; Mengwei Han ; Ran Shang ; Yuewen Wu

Source :

RBID : pubmed:32889480

Abstract

Post phytoremediation accumulation of heavy metals in plants is causing an environmental issue worldwide. In this study, we investigated the ability of eight different kinds of microorganisms to degrade and release heavy metals from heavy metal enriched ryegrass, including 5 species of bacteria (Bacillus subtilis, Bacillus licheniformis, Bacillus pumilus-I, Bacillus pumilus-II and Bacillus cereus) and 3 of fungi (Phanerochaete chrysosporium, Trichoderma ressei and Pterula sp. strain QD-1), by growing them under uranium stress and assessing their ability to degrade biomass. After 30 days, the degradation ability of fungi was found better than that of bacteria, while the metal leaching ability of bacteria was found better. The highest degradation rate (upto 60%) was obtained by using P. chrysosporium, Pterula sp. strain QD-1 exhibited the best leaching rate for uranium (upto 77%). The overall degradation rate of lignin and cellulose and hemicellulose was found lower (40% and 60%, respectively). According to the antagonistic characteristics of microbes, we combined different dominant species, in which under optimal conditions the T2 combination (P. chrysosporium, T. reesei, and Pterula sp. strain QD-1 and B. subtilis) was able to degrade 80% of the ryegrass, 51% of lignin, 74% of cellulose and hemicellulose, releasing 78% of U, 90% of Pb and the releasing rate of other heavy metals was more than 95%. FTIR analysis showed the least degradation of lignin, while SEM-EDX analysis of the degradation residues displayed the microstructure of ryegrass being greatly damaged. Only a small amount of U was found in the residues of the researched combinations. This study provides efficient Microbial Combined Degradation Technology for heavy metal enriched biomass, which can effectively deal with heavy metal enriched plants, and provide a basis for the recovery and utilization of heavy metals, avoiding secondary pollution in the environment caused by this type of biomass.

DOI: 10.1016/j.envint.2020.106051
PubMed: 32889480

Links to Exploration step

pubmed:32889480

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Usage of microbial combination degradation technology for the remediation of uranium contaminated ryegrass.</title>
<author>
<name sortKey="Jing, Luhuai" sort="Jing, Luhuai" uniqKey="Jing L" first="Luhuai" last="Jing">Luhuai Jing</name>
<affiliation>
<nlm:affiliation>School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xianghui" sort="Zhang, Xianghui" uniqKey="Zhang X" first="Xianghui" last="Zhang">Xianghui Zhang</name>
<affiliation>
<nlm:affiliation>School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ali, Imran" sort="Ali, Imran" uniqKey="Ali I" first="Imran" last="Ali">Imran Ali</name>
<affiliation>
<nlm:affiliation>School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan. Electronic address: imranalisheik@yahoo.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xiaoming" sort="Chen, Xiaoming" uniqKey="Chen X" first="Xiaoming" last="Chen">Xiaoming Chen</name>
<affiliation>
<nlm:affiliation>School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China. Electronic address: cxmxkd@163.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Li" sort="Wang, Li" uniqKey="Wang L" first="Li" last="Wang">Li Wang</name>
<affiliation>
<nlm:affiliation>College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Hao" sort="Chen, Hao" uniqKey="Chen H" first="Hao" last="Chen">Hao Chen</name>
<affiliation>
<nlm:affiliation>Sichuan Institute of Atomic Energy, Chengdu 610061, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Han, Mengwei" sort="Han, Mengwei" uniqKey="Han M" first="Mengwei" last="Han">Mengwei Han</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shang, Ran" sort="Shang, Ran" uniqKey="Shang R" first="Ran" last="Shang">Ran Shang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China. Electronic address: shangran@139.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Yuewen" sort="Wu, Yuewen" uniqKey="Wu Y" first="Yuewen" last="Wu">Yuewen Wu</name>
<affiliation>
<nlm:affiliation>Xinjiang Center for Disease Control and Prevention, Xinjiang 830002, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32889480</idno>
<idno type="pmid">32889480</idno>
<idno type="doi">10.1016/j.envint.2020.106051</idno>
<idno type="wicri:Area/Main/Corpus">000006</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000006</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Usage of microbial combination degradation technology for the remediation of uranium contaminated ryegrass.</title>
<author>
<name sortKey="Jing, Luhuai" sort="Jing, Luhuai" uniqKey="Jing L" first="Luhuai" last="Jing">Luhuai Jing</name>
<affiliation>
<nlm:affiliation>School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xianghui" sort="Zhang, Xianghui" uniqKey="Zhang X" first="Xianghui" last="Zhang">Xianghui Zhang</name>
<affiliation>
<nlm:affiliation>School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ali, Imran" sort="Ali, Imran" uniqKey="Ali I" first="Imran" last="Ali">Imran Ali</name>
<affiliation>
<nlm:affiliation>School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan. Electronic address: imranalisheik@yahoo.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xiaoming" sort="Chen, Xiaoming" uniqKey="Chen X" first="Xiaoming" last="Chen">Xiaoming Chen</name>
<affiliation>
<nlm:affiliation>School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China. Electronic address: cxmxkd@163.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Li" sort="Wang, Li" uniqKey="Wang L" first="Li" last="Wang">Li Wang</name>
<affiliation>
<nlm:affiliation>College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Hao" sort="Chen, Hao" uniqKey="Chen H" first="Hao" last="Chen">Hao Chen</name>
<affiliation>
<nlm:affiliation>Sichuan Institute of Atomic Energy, Chengdu 610061, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Han, Mengwei" sort="Han, Mengwei" uniqKey="Han M" first="Mengwei" last="Han">Mengwei Han</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shang, Ran" sort="Shang, Ran" uniqKey="Shang R" first="Ran" last="Shang">Ran Shang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China. Electronic address: shangran@139.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Yuewen" sort="Wu, Yuewen" uniqKey="Wu Y" first="Yuewen" last="Wu">Yuewen Wu</name>
<affiliation>
<nlm:affiliation>Xinjiang Center for Disease Control and Prevention, Xinjiang 830002, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environment international</title>
<idno type="eISSN">1873-6750</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Post phytoremediation accumulation of heavy metals in plants is causing an environmental issue worldwide. In this study, we investigated the ability of eight different kinds of microorganisms to degrade and release heavy metals from heavy metal enriched ryegrass, including 5 species of bacteria (Bacillus subtilis, Bacillus licheniformis, Bacillus pumilus-I, Bacillus pumilus-II and Bacillus cereus) and 3 of fungi (Phanerochaete chrysosporium, Trichoderma ressei and Pterula sp. strain QD-1), by growing them under uranium stress and assessing their ability to degrade biomass. After 30 days, the degradation ability of fungi was found better than that of bacteria, while the metal leaching ability of bacteria was found better. The highest degradation rate (upto 60%) was obtained by using P. chrysosporium, Pterula sp. strain QD-1 exhibited the best leaching rate for uranium (upto 77%). The overall degradation rate of lignin and cellulose and hemicellulose was found lower (40% and 60%, respectively). According to the antagonistic characteristics of microbes, we combined different dominant species, in which under optimal conditions the T2 combination (P. chrysosporium, T. reesei, and Pterula sp. strain QD-1 and B. subtilis) was able to degrade 80% of the ryegrass, 51% of lignin, 74% of cellulose and hemicellulose, releasing 78% of U, 90% of Pb and the releasing rate of other heavy metals was more than 95%. FTIR analysis showed the least degradation of lignin, while SEM-EDX analysis of the degradation residues displayed the microstructure of ryegrass being greatly damaged. Only a small amount of U was found in the residues of the researched combinations. This study provides efficient Microbial Combined Degradation Technology for heavy metal enriched biomass, which can effectively deal with heavy metal enriched plants, and provide a basis for the recovery and utilization of heavy metals, avoiding secondary pollution in the environment caused by this type of biomass.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">32889480</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-6750</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>144</Volume>
<PubDate>
<Year>2020</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Environment international</Title>
<ISOAbbreviation>Environ Int</ISOAbbreviation>
</Journal>
<ArticleTitle>Usage of microbial combination degradation technology for the remediation of uranium contaminated ryegrass.</ArticleTitle>
<Pagination>
<MedlinePgn>106051</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0160-4120(20)32006-7</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.envint.2020.106051</ELocationID>
<Abstract>
<AbstractText>Post phytoremediation accumulation of heavy metals in plants is causing an environmental issue worldwide. In this study, we investigated the ability of eight different kinds of microorganisms to degrade and release heavy metals from heavy metal enriched ryegrass, including 5 species of bacteria (Bacillus subtilis, Bacillus licheniformis, Bacillus pumilus-I, Bacillus pumilus-II and Bacillus cereus) and 3 of fungi (Phanerochaete chrysosporium, Trichoderma ressei and Pterula sp. strain QD-1), by growing them under uranium stress and assessing their ability to degrade biomass. After 30 days, the degradation ability of fungi was found better than that of bacteria, while the metal leaching ability of bacteria was found better. The highest degradation rate (upto 60%) was obtained by using P. chrysosporium, Pterula sp. strain QD-1 exhibited the best leaching rate for uranium (upto 77%). The overall degradation rate of lignin and cellulose and hemicellulose was found lower (40% and 60%, respectively). According to the antagonistic characteristics of microbes, we combined different dominant species, in which under optimal conditions the T2 combination (P. chrysosporium, T. reesei, and Pterula sp. strain QD-1 and B. subtilis) was able to degrade 80% of the ryegrass, 51% of lignin, 74% of cellulose and hemicellulose, releasing 78% of U, 90% of Pb and the releasing rate of other heavy metals was more than 95%. FTIR analysis showed the least degradation of lignin, while SEM-EDX analysis of the degradation residues displayed the microstructure of ryegrass being greatly damaged. Only a small amount of U was found in the residues of the researched combinations. This study provides efficient Microbial Combined Degradation Technology for heavy metal enriched biomass, which can effectively deal with heavy metal enriched plants, and provide a basis for the recovery and utilization of heavy metals, avoiding secondary pollution in the environment caused by this type of biomass.</AbstractText>
<CopyrightInformation>Copyright © 2020 The Author(s). Published by Elsevier Ltd.. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jing</LastName>
<ForeName>Luhuai</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Xianghui</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ali</LastName>
<ForeName>Imran</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan. Electronic address: imranalisheik@yahoo.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xiaoming</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China. Electronic address: cxmxkd@163.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Hao</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Sichuan Institute of Atomic Energy, Chengdu 610061, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Mengwei</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shang</LastName>
<ForeName>Ran</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China. Electronic address: shangran@139.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Yuewen</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Xinjiang Center for Disease Control and Prevention, Xinjiang 830002, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Environ Int</MedlineTA>
<NlmUniqueID>7807270</NlmUniqueID>
<ISSNLinking>0160-4120</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Heavy metal enriched plants</Keyword>
<Keyword MajorTopicYN="N">Microbial degradation</Keyword>
<Keyword MajorTopicYN="N">Phytoremediation</Keyword>
<Keyword MajorTopicYN="N">Ryegrass</Keyword>
<Keyword MajorTopicYN="N">Uranium</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>05</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>5</Day>
<Hour>12</Hour>
<Minute>29</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32889480</ArticleId>
<ArticleId IdType="pii">S0160-4120(20)32006-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.envint.2020.106051</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000006 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000006 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32889480
   |texte=   Usage of microbial combination degradation technology for the remediation of uranium contaminated ryegrass.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32889480" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020