Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Anaerobic digestion of wastewater derived from the pressing of orange peel generated in orange juice production.

Identifieur interne : 000B42 ( PubMed/Curation ); précédent : 000B41; suivant : 000B43

Anaerobic digestion of wastewater derived from the pressing of orange peel generated in orange juice production.

Auteurs : José Angel Siles [Espagne] ; María De Los Angeles Martín ; Antonio Martín ; Francisco Raposo ; Rafael Borja

Source :

RBID : pubmed:17274629

English descriptors

Abstract

A study of the anaerobic digestion of wastewater from the pressing of orange peel generated in orange juice production was carried out in a laboratory-scale completely stirred tank reactor at mesophilic temperature (37 degrees C). Prior to anaerobic treatment the raw wastewater was subjected to physicochemical treatment using aluminum sulfate as a flocculant and to pH reduction using a solution of sulfuric acid. The reactor was batch fed at COD loads of 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 g of COD. The process was very stable for all of the loads studied, with mean pH and alkalinity values of 7.5 and 3220 mg of CaCO3/L, respectively. The anaerobic digestion of this substrate was found to follow a first-order kinetic model, from which the specific rate constants for methane production, K(G), were determined. The K(G) values decreased considerably from 0.0672 to 0.0078 L/(g h) when the COD load increased from 1.5 to 5.0 g of COD, indicating an inhibition phenomenon in the system studied. The proposed model predicted the behavior of the reactor very accurately, showing deviations of <5% between the experimental and theoretical values of methane production. The methane yield coefficient was found to be 295 mL of CH4 STP/g of COD removed, whereas the mean biodegradability of the substrate (TOC) was 88.2%. A first-order kinetic model for substrate (TOC) consumption allowed determination of the specific rate constants for substrate uptake, K(C), which also decreased with increasing loading, confirming the above-mentioned inhibition process. Finally, the evolution of the individual volatile fatty acid concentrations (acetic, C2; propionic, C3; butyric, C4; isobutyric, iC4; valeric, C5; isovaleric, iC5; and caproic, C6) with digestion time for all loads used was also studied. The main acids generated were acetic and propionic for all loads studied, facilitating the conversion into methane.

DOI: 10.1021/jf0630623
PubMed: 17274629

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:17274629

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Anaerobic digestion of wastewater derived from the pressing of orange peel generated in orange juice production.</title>
<author>
<name sortKey="Siles, Jose Angel" sort="Siles, Jose Angel" uniqKey="Siles J" first="José Angel" last="Siles">José Angel Siles</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Química InorgAnica e Ingeniería Química, Facultad de Ciencias, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio C-3, Ctra. Madrid-CAdiz, Km 396, 14071 Córdoba, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Química InorgAnica e Ingeniería Química, Facultad de Ciencias, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio C-3, Ctra. Madrid-CAdiz, Km 396, 14071 Córdoba</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="De Los Angeles Martin, Maria" sort="De Los Angeles Martin, Maria" uniqKey="De Los Angeles Martin M" first="María" last="De Los Angeles Martín">María De Los Angeles Martín</name>
</author>
<author>
<name sortKey="Martin, Antonio" sort="Martin, Antonio" uniqKey="Martin A" first="Antonio" last="Martín">Antonio Martín</name>
</author>
<author>
<name sortKey="Raposo, Francisco" sort="Raposo, Francisco" uniqKey="Raposo F" first="Francisco" last="Raposo">Francisco Raposo</name>
</author>
<author>
<name sortKey="Borja, Rafael" sort="Borja, Rafael" uniqKey="Borja R" first="Rafael" last="Borja">Rafael Borja</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17274629</idno>
<idno type="pmid">17274629</idno>
<idno type="doi">10.1021/jf0630623</idno>
<idno type="wicri:Area/PubMed/Corpus">000B42</idno>
<idno type="wicri:Area/PubMed/Curation">000B42</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Anaerobic digestion of wastewater derived from the pressing of orange peel generated in orange juice production.</title>
<author>
<name sortKey="Siles, Jose Angel" sort="Siles, Jose Angel" uniqKey="Siles J" first="José Angel" last="Siles">José Angel Siles</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Química InorgAnica e Ingeniería Química, Facultad de Ciencias, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio C-3, Ctra. Madrid-CAdiz, Km 396, 14071 Córdoba, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departamento de Química InorgAnica e Ingeniería Química, Facultad de Ciencias, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio C-3, Ctra. Madrid-CAdiz, Km 396, 14071 Córdoba</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="De Los Angeles Martin, Maria" sort="De Los Angeles Martin, Maria" uniqKey="De Los Angeles Martin M" first="María" last="De Los Angeles Martín">María De Los Angeles Martín</name>
</author>
<author>
<name sortKey="Martin, Antonio" sort="Martin, Antonio" uniqKey="Martin A" first="Antonio" last="Martín">Antonio Martín</name>
</author>
<author>
<name sortKey="Raposo, Francisco" sort="Raposo, Francisco" uniqKey="Raposo F" first="Francisco" last="Raposo">Francisco Raposo</name>
</author>
<author>
<name sortKey="Borja, Rafael" sort="Borja, Rafael" uniqKey="Borja R" first="Rafael" last="Borja">Rafael Borja</name>
</author>
</analytic>
<series>
<title level="j">Journal of agricultural and food chemistry</title>
<idno type="ISSN">0021-8561</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anaerobiosis</term>
<term>Beverages</term>
<term>Chemistry, Physical</term>
<term>Citrus sinensis (chemistry)</term>
<term>Food Handling</term>
<term>Fruit (chemistry)</term>
<term>Hydrogen-Ion Concentration</term>
<term>Kinetics</term>
<term>Methane (chemistry)</term>
<term>Physicochemical Phenomena</term>
<term>Waste Products</term>
<term>Water (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Methane</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Citrus sinensis</term>
<term>Fruit</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Anaerobiosis</term>
<term>Beverages</term>
<term>Chemistry, Physical</term>
<term>Food Handling</term>
<term>Hydrogen-Ion Concentration</term>
<term>Kinetics</term>
<term>Physicochemical Phenomena</term>
<term>Waste Products</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A study of the anaerobic digestion of wastewater from the pressing of orange peel generated in orange juice production was carried out in a laboratory-scale completely stirred tank reactor at mesophilic temperature (37 degrees C). Prior to anaerobic treatment the raw wastewater was subjected to physicochemical treatment using aluminum sulfate as a flocculant and to pH reduction using a solution of sulfuric acid. The reactor was batch fed at COD loads of 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 g of COD. The process was very stable for all of the loads studied, with mean pH and alkalinity values of 7.5 and 3220 mg of CaCO3/L, respectively. The anaerobic digestion of this substrate was found to follow a first-order kinetic model, from which the specific rate constants for methane production, K(G), were determined. The K(G) values decreased considerably from 0.0672 to 0.0078 L/(g h) when the COD load increased from 1.5 to 5.0 g of COD, indicating an inhibition phenomenon in the system studied. The proposed model predicted the behavior of the reactor very accurately, showing deviations of <5% between the experimental and theoretical values of methane production. The methane yield coefficient was found to be 295 mL of CH4 STP/g of COD removed, whereas the mean biodegradability of the substrate (TOC) was 88.2%. A first-order kinetic model for substrate (TOC) consumption allowed determination of the specific rate constants for substrate uptake, K(C), which also decreased with increasing loading, confirming the above-mentioned inhibition process. Finally, the evolution of the individual volatile fatty acid concentrations (acetic, C2; propionic, C3; butyric, C4; isobutyric, iC4; valeric, C5; isovaleric, iC5; and caproic, C6) with digestion time for all loads used was also studied. The main acids generated were acetic and propionic for all loads studied, facilitating the conversion into methane.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17274629</PMID>
<DateCreated>
<Year>2007</Year>
<Month>3</Month>
<Day>1</Day>
</DateCreated>
<DateCompleted>
<Year>2007</Year>
<Month>06</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-8561</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>55</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2007</Year>
<Month>Mar</Month>
<Day>7</Day>
</PubDate>
</JournalIssue>
<Title>Journal of agricultural and food chemistry</Title>
<ISOAbbreviation>J. Agric. Food Chem.</ISOAbbreviation>
</Journal>
<ArticleTitle>Anaerobic digestion of wastewater derived from the pressing of orange peel generated in orange juice production.</ArticleTitle>
<Pagination>
<MedlinePgn>1905-14</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>A study of the anaerobic digestion of wastewater from the pressing of orange peel generated in orange juice production was carried out in a laboratory-scale completely stirred tank reactor at mesophilic temperature (37 degrees C). Prior to anaerobic treatment the raw wastewater was subjected to physicochemical treatment using aluminum sulfate as a flocculant and to pH reduction using a solution of sulfuric acid. The reactor was batch fed at COD loads of 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 g of COD. The process was very stable for all of the loads studied, with mean pH and alkalinity values of 7.5 and 3220 mg of CaCO3/L, respectively. The anaerobic digestion of this substrate was found to follow a first-order kinetic model, from which the specific rate constants for methane production, K(G), were determined. The K(G) values decreased considerably from 0.0672 to 0.0078 L/(g h) when the COD load increased from 1.5 to 5.0 g of COD, indicating an inhibition phenomenon in the system studied. The proposed model predicted the behavior of the reactor very accurately, showing deviations of <5% between the experimental and theoretical values of methane production. The methane yield coefficient was found to be 295 mL of CH4 STP/g of COD removed, whereas the mean biodegradability of the substrate (TOC) was 88.2%. A first-order kinetic model for substrate (TOC) consumption allowed determination of the specific rate constants for substrate uptake, K(C), which also decreased with increasing loading, confirming the above-mentioned inhibition process. Finally, the evolution of the individual volatile fatty acid concentrations (acetic, C2; propionic, C3; butyric, C4; isobutyric, iC4; valeric, C5; isovaleric, iC5; and caproic, C6) with digestion time for all loads used was also studied. The main acids generated were acetic and propionic for all loads studied, facilitating the conversion into methane.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Siles</LastName>
<ForeName>José Angel</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Química InorgAnica e Ingeniería Química, Facultad de Ciencias, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio C-3, Ctra. Madrid-CAdiz, Km 396, 14071 Córdoba, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Los Angeles Martín</LastName>
<ForeName>María</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Martín</LastName>
<ForeName>Antonio</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Raposo</LastName>
<ForeName>Francisco</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Borja</LastName>
<ForeName>Rafael</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>ENG</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>Feb</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Agric Food Chem</MedlineTA>
<NlmUniqueID>0374755</NlmUniqueID>
<ISSNLinking>0021-8561</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014866">Waste Products</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>OP0UW79H66</RegistryNumber>
<NameOfSubstance UI="D008697">Methane</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000693" MajorTopicYN="N">Anaerobiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001628" MajorTopicYN="N">Beverages</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002627" MajorTopicYN="N">Chemistry, Physical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032084" MajorTopicYN="N">Citrus sinensis</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005511" MajorTopicYN="N">Food Handling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005638" MajorTopicYN="N">Fruit</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008697" MajorTopicYN="N">Methane</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055605" MajorTopicYN="N">Physicochemical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014866" MajorTopicYN="Y">Waste Products</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17274629</ArticleId>
<ArticleId IdType="doi">10.1021/jf0630623</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B42 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000B42 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:17274629
   |texte=   Anaerobic digestion of wastewater derived from the pressing of orange peel generated in orange juice production.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:17274629" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024