Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development.

Identifieur interne : 000994 ( PubMed/Curation ); précédent : 000993; suivant : 000995

Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development.

Auteurs : Qing Liu [République populaire de Chine] ; Andan Zhu ; Lijun Chai ; Wenjing Zhou ; Keqin Yu ; Jian Ding ; Juan Xu ; Xiuxin Deng

Source :

RBID : pubmed:19218315

English descriptors

Abstract

Bud mutations often arise in citrus. The selection of mutants is one of the most important breeding channels in citrus. However, the molecular basis of bud mutation has rarely been studied. To identify differentially expressed genes in a spontaneous sweet orange [C. sinensis (L.) Osbeck] bud mutation which causes lycopene accumulation, low citric acid, and high sucrose in fruit, suppression subtractive hybridization and microarray analysis were performed to decipher this bud mutation during fruit development. After sequencing of the differentially expressed clones, a total of 267 non-redundant transcripts were obtained and 182 (68.2%) of them shared homology (E-value < or = 1x10(-10)) with known gene products. Few genes were constitutively up- or down-regulated (fold change > or = 2) in the bud mutation during fruit development. Self-organizing tree algorithm analysis results showed that 95.1% of the differentially expressed genes were extensively coordinated with the initiation of lycopene accumulation. Metabolic process, cellular process, establishment of localization, response to stimulus, and biological regulation-related transcripts were among the most regulated genes. These genes were involved in many biological processes such as organic acid metabolism, lipid metabolism, transport, and pyruvate metabolism, etc. Moreover, 13 genes which were differentially regulated at 170 d after flowering shared homology with previously described signal transduction or transcription factors. The information generated in this study provides new clues to aid in the understanding of bud mutation in citrus.

DOI: 10.1093/jxb/ern329
PubMed: 19218315

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19218315

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development.</title>
<author>
<name sortKey="Liu, Qing" sort="Liu, Qing" uniqKey="Liu Q" first="Qing" last="Liu">Qing Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Andan" sort="Zhu, Andan" uniqKey="Zhu A" first="Andan" last="Zhu">Andan Zhu</name>
</author>
<author>
<name sortKey="Chai, Lijun" sort="Chai, Lijun" uniqKey="Chai L" first="Lijun" last="Chai">Lijun Chai</name>
</author>
<author>
<name sortKey="Zhou, Wenjing" sort="Zhou, Wenjing" uniqKey="Zhou W" first="Wenjing" last="Zhou">Wenjing Zhou</name>
</author>
<author>
<name sortKey="Yu, Keqin" sort="Yu, Keqin" uniqKey="Yu K" first="Keqin" last="Yu">Keqin Yu</name>
</author>
<author>
<name sortKey="Ding, Jian" sort="Ding, Jian" uniqKey="Ding J" first="Jian" last="Ding">Jian Ding</name>
</author>
<author>
<name sortKey="Xu, Juan" sort="Xu, Juan" uniqKey="Xu J" first="Juan" last="Xu">Juan Xu</name>
</author>
<author>
<name sortKey="Deng, Xiuxin" sort="Deng, Xiuxin" uniqKey="Deng X" first="Xiuxin" last="Deng">Xiuxin Deng</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19218315</idno>
<idno type="pmid">19218315</idno>
<idno type="doi">10.1093/jxb/ern329</idno>
<idno type="wicri:Area/PubMed/Corpus">000994</idno>
<idno type="wicri:Area/PubMed/Curation">000994</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development.</title>
<author>
<name sortKey="Liu, Qing" sort="Liu, Qing" uniqKey="Liu Q" first="Qing" last="Liu">Qing Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Andan" sort="Zhu, Andan" uniqKey="Zhu A" first="Andan" last="Zhu">Andan Zhu</name>
</author>
<author>
<name sortKey="Chai, Lijun" sort="Chai, Lijun" uniqKey="Chai L" first="Lijun" last="Chai">Lijun Chai</name>
</author>
<author>
<name sortKey="Zhou, Wenjing" sort="Zhou, Wenjing" uniqKey="Zhou W" first="Wenjing" last="Zhou">Wenjing Zhou</name>
</author>
<author>
<name sortKey="Yu, Keqin" sort="Yu, Keqin" uniqKey="Yu K" first="Keqin" last="Yu">Keqin Yu</name>
</author>
<author>
<name sortKey="Ding, Jian" sort="Ding, Jian" uniqKey="Ding J" first="Jian" last="Ding">Jian Ding</name>
</author>
<author>
<name sortKey="Xu, Juan" sort="Xu, Juan" uniqKey="Xu J" first="Juan" last="Xu">Juan Xu</name>
</author>
<author>
<name sortKey="Deng, Xiuxin" sort="Deng, Xiuxin" uniqKey="Deng X" first="Xiuxin" last="Deng">Xiuxin Deng</name>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Citrus sinensis (genetics)</term>
<term>Citrus sinensis (growth & development)</term>
<term>Cluster Analysis</term>
<term>Expressed Sequence Tags</term>
<term>Flowers (genetics)</term>
<term>Fruit (genetics)</term>
<term>Fruit (growth & development)</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Library</term>
<term>Genes, Plant</term>
<term>Genes, Regulator</term>
<term>Metabolic Networks and Pathways</term>
<term>Mutation (genetics)</term>
<term>Nucleic Acid Hybridization</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Phenotype</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Pyruvates (metabolism)</term>
<term>Reproducibility of Results</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Citrus sinensis</term>
<term>Flowers</term>
<term>Fruit</term>
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Citrus sinensis</term>
<term>Fruit</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
<term>Pyruvates</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cluster Analysis</term>
<term>Expressed Sequence Tags</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Library</term>
<term>Genes, Plant</term>
<term>Genes, Regulator</term>
<term>Metabolic Networks and Pathways</term>
<term>Nucleic Acid Hybridization</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Phenotype</term>
<term>Reproducibility of Results</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Bud mutations often arise in citrus. The selection of mutants is one of the most important breeding channels in citrus. However, the molecular basis of bud mutation has rarely been studied. To identify differentially expressed genes in a spontaneous sweet orange [C. sinensis (L.) Osbeck] bud mutation which causes lycopene accumulation, low citric acid, and high sucrose in fruit, suppression subtractive hybridization and microarray analysis were performed to decipher this bud mutation during fruit development. After sequencing of the differentially expressed clones, a total of 267 non-redundant transcripts were obtained and 182 (68.2%) of them shared homology (E-value < or = 1x10(-10)) with known gene products. Few genes were constitutively up- or down-regulated (fold change > or = 2) in the bud mutation during fruit development. Self-organizing tree algorithm analysis results showed that 95.1% of the differentially expressed genes were extensively coordinated with the initiation of lycopene accumulation. Metabolic process, cellular process, establishment of localization, response to stimulus, and biological regulation-related transcripts were among the most regulated genes. These genes were involved in many biological processes such as organic acid metabolism, lipid metabolism, transport, and pyruvate metabolism, etc. Moreover, 13 genes which were differentially regulated at 170 d after flowering shared homology with previously described signal transduction or transcription factors. The information generated in this study provides new clues to aid in the understanding of bud mutation in citrus.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19218315</PMID>
<DateCreated>
<Year>2009</Year>
<Month>3</Month>
<Day>9</Day>
</DateCreated>
<DateCompleted>
<Year>2009</Year>
<Month>05</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>60</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2009</Year>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J. Exp. Bot.</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development.</ArticleTitle>
<Pagination>
<MedlinePgn>801-13</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/ern329</ELocationID>
<Abstract>
<AbstractText>Bud mutations often arise in citrus. The selection of mutants is one of the most important breeding channels in citrus. However, the molecular basis of bud mutation has rarely been studied. To identify differentially expressed genes in a spontaneous sweet orange [C. sinensis (L.) Osbeck] bud mutation which causes lycopene accumulation, low citric acid, and high sucrose in fruit, suppression subtractive hybridization and microarray analysis were performed to decipher this bud mutation during fruit development. After sequencing of the differentially expressed clones, a total of 267 non-redundant transcripts were obtained and 182 (68.2%) of them shared homology (E-value < or = 1x10(-10)) with known gene products. Few genes were constitutively up- or down-regulated (fold change > or = 2) in the bud mutation during fruit development. Self-organizing tree algorithm analysis results showed that 95.1% of the differentially expressed genes were extensively coordinated with the initiation of lycopene accumulation. Metabolic process, cellular process, establishment of localization, response to stimulus, and biological regulation-related transcripts were among the most regulated genes. These genes were involved in many biological processes such as organic acid metabolism, lipid metabolism, transport, and pyruvate metabolism, etc. Moreover, 13 genes which were differentially regulated at 170 d after flowering shared homology with previously described signal transduction or transcription factors. The information generated in this study provides new clues to aid in the understanding of bud mutation in citrus.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Qing</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Andan</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chai</LastName>
<ForeName>Lijun</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Wenjing</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Keqin</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ding</LastName>
<ForeName>Jian</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Juan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Deng</LastName>
<ForeName>Xiuxin</ForeName>
<Initials>X</Initials>
</Author>
</AuthorList>
<Language>ENG</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>Feb</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011773">Pyruvates</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2000 Jun;123(2):497-508</RefSource>
<PMID Version="1">10859180</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 1996 Feb;110(2):511-20</RefSource>
<PMID Version="1">8742332</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):1306-11</RefSource>
<PMID Version="1">11158635</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2001 Feb;17(2):126-36</RefSource>
<PMID Version="1">11238068</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Genet. 2001 Sep;17(9):536-40</RefSource>
<PMID Version="1">11525837</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Diabetes. 2001 Nov;50(11):2591-7</RefSource>
<PMID Version="1">11679439</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Phylogenet Evol. 2001 Nov;21(2):285-93</RefSource>
<PMID Version="1">11697922</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2002 Feb 15;30(4):e15</RefSource>
<PMID Version="1">11842121</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Plant Biol. 2002;53:275-97</RefSource>
<PMID Version="1">12221977</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1996 Oct 4;271(40):24349-52</RefSource>
<PMID Version="1">8798688</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8675-9</RefSource>
<PMID Version="1">7567995</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 1997 Jan 6;400(3):271-4</RefSource>
<PMID Version="1">9009212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Mol Life Sci. 1998 Jun;54(6):582-96</RefSource>
<PMID Version="1">9676577</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Insect Biochem Mol Biol. 1998 Dec;28(12):927-34</RefSource>
<PMID Version="1">9887509</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 1999 Mar 15;27(6):1517-23</RefSource>
<PMID Version="1">10037815</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 1999 Sep;9(9):868-77</RefSource>
<PMID Version="1">10508846</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cold Spring Harb Symp Quant Biol. 1951;16:13-47</RefSource>
<PMID Version="1">14942727</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2004 Dec;136(4):4184-97</RefSource>
<PMID Version="1">15563627</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2005 Jan;137(1):176-89</RefSource>
<PMID Version="1">15618416</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2005 Feb;10(2):79-87</RefSource>
<PMID Version="1">15708345</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2005 Sep 15;21(18):3674-6</RefSource>
<PMID Version="1">16081474</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Virol. 2005 Nov;79(22):14392-403</RefSource>
<PMID Version="1">16254373</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2005 Nov;17(11):2954-65</RefSource>
<PMID Version="1">16243903</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2006;170(4):723-38</RefSource>
<PMID Version="1">16684234</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2006 Aug;38(8):948-52</RefSource>
<PMID Version="1">16832354</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Mol Biol. 2006 Nov;62(4-5):623-35</RefSource>
<PMID Version="1">16932847</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2007;8:31</RefSource>
<PMID Version="1">17254327</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2007;58(3):507-20</RefSource>
<PMID Version="1">17210988</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Genet Genomics. 2007 Apr;277(4):365-77</RefSource>
<PMID Version="1">17216224</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 2007 Jul;226(2):529-39</RefSource>
<PMID Version="1">17334781</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2007;176(2):288-98</RefSource>
<PMID Version="1">17888111</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2007;58(15-16):4107-18</RefSource>
<PMID Version="1">18042806</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2007;58(15-16):4161-71</RefSource>
<PMID Version="1">18182424</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Plant Physiol. 2008 Jun 16;165(9):983-90</RefSource>
<PMID Version="1">17923169</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2008 Jul;147(3):1300-15</RefSource>
<PMID Version="1">18467459</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genet Res. 2003 Jun;81(3):179-92</RefSource>
<PMID Version="1">12929909</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2003 Sep;15(9):2165-80</RefSource>
<PMID Version="1">12953118</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2003 Dec;108(1):121-30</RefSource>
<PMID Version="1">12937896</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Mol Biol. 2003 Oct;53(3):383-97</RefSource>
<PMID Version="1">14750526</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2004 Feb;134(2):824-37</RefSource>
<PMID Version="1">14739348</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 2004 May;219(1):48-58</RefSource>
<PMID Version="1">14991407</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2004 May 14;304(5673):982</RefSource>
<PMID Version="1">15143274</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Plant Biol. 2004;55:141-72</RefSource>
<PMID Version="1">15377217</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 1993 Aug;102(4):1353-4</RefSource>
<PMID Version="1">8278555</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 1994 Dec;106(4):1699-700</RefSource>
<PMID Version="1">7846175</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 1995 Jul;108(3):1323-4</RefSource>
<PMID Version="1">7630961</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 1995;197(2):369-75</RefSource>
<PMID Version="1">8547819</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1996 Feb 23;271(8):4148-53</RefSource>
<PMID Version="1">8626755</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6025-30</RefSource>
<PMID Version="1">8650213</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 2000 May;210(6):979-84</RefSource>
<PMID Version="1">10872231</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D032084" MajorTopicYN="N">Citrus sinensis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020224" MajorTopicYN="N">Expressed Sequence Tags</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035264" MajorTopicYN="N">Flowers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005638" MajorTopicYN="N">Fruit</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015723" MajorTopicYN="N">Gene Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005809" MajorTopicYN="N">Genes, Regulator</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009693" MajorTopicYN="N">Nucleic Acid Hybridization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011773" MajorTopicYN="N">Pyruvates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC2652045</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>2</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>2</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>5</Month>
<Day>27</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19218315</ArticleId>
<ArticleId IdType="pii">ern329</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/ern329</ArticleId>
<ArticleId IdType="pmc">PMC2652045</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000994 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000994 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:19218315
   |texte=   Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:19218315" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024