Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis.

Identifieur interne : 000A42 ( PubMed/Corpus ); précédent : 000A41; suivant : 000A43

An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis.

Auteurs : Enriqueta Al S ; María Roca ; Domingo José Iglesias ; Maria Isabel Mínguez-Mosquera ; Cynthia Maria Borges Damasceno ; Theodore William Thannhauser ; Jocelyn Kenneth Campbell Rose ; Manuel Tal N ; Manuel Cerc S

Source :

RBID : pubmed:18467459

English descriptors

Abstract

A Citrus sinensis spontaneous mutant, navel negra (nan), produces fruit with an abnormal brown-colored flavedo during ripening. Analysis of pigment composition in the wild-type and nan flavedo suggested that typical ripening-related chlorophyll (Chl) degradation, but not carotenoid biosynthesis, was impaired in the mutant, identifying nan as a type C stay-green mutant. nan exhibited normal expression of Chl biosynthetic and catabolic genes and chlorophyllase activity but no accumulation of dephytylated Chl compounds during ripening, suggesting that the mutation is not related to a lesion in any of the principal enzymatic steps in Chl catabolism. Transcript profiling using a citrus microarray indicated that a citrus ortholog of a number of SGR (for STAY-GREEN) genes was expressed at substantially lower levels in nan, both prior to and during ripening. However, the pattern of catabolite accumulation and SGR sequence analysis suggested that the nan mutation is distinct from those in previously described stay-green mutants and is associated with an upstream regulatory step, rather than directly influencing a specific component of Chl catabolism. Transcriptomic and comparative proteomic profiling further indicated that the nan mutation resulted in the suppressed expression of numerous photosynthesis-related genes and in the induction of genes that are associated with oxidative stress. These data, along with metabolite analyses, suggest that nan fruit employ a number of molecular mechanisms to compensate for the elevated Chl levels and associated photooxidative stress.

DOI: 10.1104/pp.108.119917
PubMed: 18467459

Links to Exploration step

pubmed:18467459

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis.</title>
<author>
<name sortKey="Al S, Enriqueta" sort="Al S, Enriqueta" uniqKey="Al S E" first="Enriqueta" last="Al S">Enriqueta Al S</name>
<affiliation>
<nlm:affiliation>Instituto Valenciano de Investigaciones Agrarias, Centro de Genómica, 46113 Moncada, Valencia, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roca, Maria" sort="Roca, Maria" uniqKey="Roca M" first="María" last="Roca">María Roca</name>
</author>
<author>
<name sortKey="Iglesias, Domingo Jose" sort="Iglesias, Domingo Jose" uniqKey="Iglesias D" first="Domingo José" last="Iglesias">Domingo José Iglesias</name>
</author>
<author>
<name sortKey="Minguez Mosquera, Maria Isabel" sort="Minguez Mosquera, Maria Isabel" uniqKey="Minguez Mosquera M" first="Maria Isabel" last="Mínguez-Mosquera">Maria Isabel Mínguez-Mosquera</name>
</author>
<author>
<name sortKey="Damasceno, Cynthia Maria Borges" sort="Damasceno, Cynthia Maria Borges" uniqKey="Damasceno C" first="Cynthia Maria Borges" last="Damasceno">Cynthia Maria Borges Damasceno</name>
</author>
<author>
<name sortKey="Thannhauser, Theodore William" sort="Thannhauser, Theodore William" uniqKey="Thannhauser T" first="Theodore William" last="Thannhauser">Theodore William Thannhauser</name>
</author>
<author>
<name sortKey="Rose, Jocelyn Kenneth Campbell" sort="Rose, Jocelyn Kenneth Campbell" uniqKey="Rose J" first="Jocelyn Kenneth Campbell" last="Rose">Jocelyn Kenneth Campbell Rose</name>
</author>
<author>
<name sortKey="Tal N, Manuel" sort="Tal N, Manuel" uniqKey="Tal N M" first="Manuel" last="Tal N">Manuel Tal N</name>
</author>
<author>
<name sortKey="Cerc S, Manuel" sort="Cerc S, Manuel" uniqKey="Cerc S M" first="Manuel" last="Cerc S">Manuel Cerc S</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18467459</idno>
<idno type="pmid">18467459</idno>
<idno type="doi">10.1104/pp.108.119917</idno>
<idno type="wicri:Area/PubMed/Corpus">000A42</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis.</title>
<author>
<name sortKey="Al S, Enriqueta" sort="Al S, Enriqueta" uniqKey="Al S E" first="Enriqueta" last="Al S">Enriqueta Al S</name>
<affiliation>
<nlm:affiliation>Instituto Valenciano de Investigaciones Agrarias, Centro de Genómica, 46113 Moncada, Valencia, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roca, Maria" sort="Roca, Maria" uniqKey="Roca M" first="María" last="Roca">María Roca</name>
</author>
<author>
<name sortKey="Iglesias, Domingo Jose" sort="Iglesias, Domingo Jose" uniqKey="Iglesias D" first="Domingo José" last="Iglesias">Domingo José Iglesias</name>
</author>
<author>
<name sortKey="Minguez Mosquera, Maria Isabel" sort="Minguez Mosquera, Maria Isabel" uniqKey="Minguez Mosquera M" first="Maria Isabel" last="Mínguez-Mosquera">Maria Isabel Mínguez-Mosquera</name>
</author>
<author>
<name sortKey="Damasceno, Cynthia Maria Borges" sort="Damasceno, Cynthia Maria Borges" uniqKey="Damasceno C" first="Cynthia Maria Borges" last="Damasceno">Cynthia Maria Borges Damasceno</name>
</author>
<author>
<name sortKey="Thannhauser, Theodore William" sort="Thannhauser, Theodore William" uniqKey="Thannhauser T" first="Theodore William" last="Thannhauser">Theodore William Thannhauser</name>
</author>
<author>
<name sortKey="Rose, Jocelyn Kenneth Campbell" sort="Rose, Jocelyn Kenneth Campbell" uniqKey="Rose J" first="Jocelyn Kenneth Campbell" last="Rose">Jocelyn Kenneth Campbell Rose</name>
</author>
<author>
<name sortKey="Tal N, Manuel" sort="Tal N, Manuel" uniqKey="Tal N M" first="Manuel" last="Tal N">Manuel Tal N</name>
</author>
<author>
<name sortKey="Cerc S, Manuel" sort="Cerc S, Manuel" uniqKey="Cerc S M" first="Manuel" last="Cerc S">Manuel Cerc S</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Carboxylic Ester Hydrolases (metabolism)</term>
<term>Chlorophyll (metabolism)</term>
<term>Citrus sinensis (genetics)</term>
<term>Citrus sinensis (metabolism)</term>
<term>Electrophoresis, Gel, Two-Dimensional</term>
<term>Ethylenes (metabolism)</term>
<term>Fruit (metabolism)</term>
<term>Gene Expression</term>
<term>Gene Expression Profiling</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Plant Proteins (metabolism)</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carboxylic Ester Hydrolases</term>
<term>Chlorophyll</term>
<term>Ethylenes</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Citrus sinensis</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Citrus sinensis</term>
<term>Fruit</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electrophoresis, Gel, Two-Dimensional</term>
<term>Gene Expression</term>
<term>Gene Expression Profiling</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A Citrus sinensis spontaneous mutant, navel negra (nan), produces fruit with an abnormal brown-colored flavedo during ripening. Analysis of pigment composition in the wild-type and nan flavedo suggested that typical ripening-related chlorophyll (Chl) degradation, but not carotenoid biosynthesis, was impaired in the mutant, identifying nan as a type C stay-green mutant. nan exhibited normal expression of Chl biosynthetic and catabolic genes and chlorophyllase activity but no accumulation of dephytylated Chl compounds during ripening, suggesting that the mutation is not related to a lesion in any of the principal enzymatic steps in Chl catabolism. Transcript profiling using a citrus microarray indicated that a citrus ortholog of a number of SGR (for STAY-GREEN) genes was expressed at substantially lower levels in nan, both prior to and during ripening. However, the pattern of catabolite accumulation and SGR sequence analysis suggested that the nan mutation is distinct from those in previously described stay-green mutants and is associated with an upstream regulatory step, rather than directly influencing a specific component of Chl catabolism. Transcriptomic and comparative proteomic profiling further indicated that the nan mutation resulted in the suppressed expression of numerous photosynthesis-related genes and in the induction of genes that are associated with oxidative stress. These data, along with metabolite analyses, suggest that nan fruit employ a number of molecular mechanisms to compensate for the elevated Chl levels and associated photooxidative stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18467459</PMID>
<DateCreated>
<Year>2008</Year>
<Month>7</Month>
<Day>9</Day>
</DateCreated>
<DateCompleted>
<Year>2008</Year>
<Month>09</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>9</Month>
<Day>3</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>147</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2008</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>1300-15</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.108.119917</ELocationID>
<Abstract>
<AbstractText>A Citrus sinensis spontaneous mutant, navel negra (nan), produces fruit with an abnormal brown-colored flavedo during ripening. Analysis of pigment composition in the wild-type and nan flavedo suggested that typical ripening-related chlorophyll (Chl) degradation, but not carotenoid biosynthesis, was impaired in the mutant, identifying nan as a type C stay-green mutant. nan exhibited normal expression of Chl biosynthetic and catabolic genes and chlorophyllase activity but no accumulation of dephytylated Chl compounds during ripening, suggesting that the mutation is not related to a lesion in any of the principal enzymatic steps in Chl catabolism. Transcript profiling using a citrus microarray indicated that a citrus ortholog of a number of SGR (for STAY-GREEN) genes was expressed at substantially lower levels in nan, both prior to and during ripening. However, the pattern of catabolite accumulation and SGR sequence analysis suggested that the nan mutation is distinct from those in previously described stay-green mutants and is associated with an upstream regulatory step, rather than directly influencing a specific component of Chl catabolism. Transcriptomic and comparative proteomic profiling further indicated that the nan mutation resulted in the suppressed expression of numerous photosynthesis-related genes and in the induction of genes that are associated with oxidative stress. These data, along with metabolite analyses, suggest that nan fruit employ a number of molecular mechanisms to compensate for the elevated Chl levels and associated photooxidative stress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Alós</LastName>
<ForeName>Enriqueta</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Instituto Valenciano de Investigaciones Agrarias, Centro de Genómica, 46113 Moncada, Valencia, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Roca</LastName>
<ForeName>María</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Iglesias</LastName>
<ForeName>Domingo José</ForeName>
<Initials>DJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mínguez-Mosquera</LastName>
<ForeName>Maria Isabel</ForeName>
<Initials>MI</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Damasceno</LastName>
<ForeName>Cynthia Maria Borges</ForeName>
<Initials>CM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thannhauser</LastName>
<ForeName>Theodore William</ForeName>
<Initials>TW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rose</LastName>
<ForeName>Jocelyn Kenneth Campbell</ForeName>
<Initials>JK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Talón</LastName>
<ForeName>Manuel</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cercós</LastName>
<ForeName>Manuel</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>ENG</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AM922109</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>May</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C078410">ELIP protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005030">Ethylenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>91GW059KN7</RegistryNumber>
<NameOfSubstance UI="C036216">ethylene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.1.-</RegistryNumber>
<NameOfSubstance UI="D002265">Carboxylic Ester Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.1.14</RegistryNumber>
<NameOfSubstance UI="C019875">chlorophyllase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Proteomics. 2004 Sep;4(9):2522-32</RefSource>
<PMID Version="1">15352226</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Plant Biol. 2004;55:373-99</RefSource>
<PMID Version="1">15377225</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2004 Oct;9(10):490-8</RefSource>
<PMID Version="1">15465684</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Agric Food Chem. 2004 Nov 3;52(22):6724-31</RefSource>
<PMID Version="1">15506808</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Biochem Sci. 1992 Feb;17(2):61-6</RefSource>
<PMID Version="1">1566330</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 1992 Aug;11(8):2771-8</RefSource>
<PMID Version="1">1386305</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1993 Mar 15;268(8):5438-44</RefSource>
<PMID Version="1">8449905</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1994 Dec 2;269(48):30221-6</RefSource>
<PMID Version="1">7982930</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biochem. 1994 Aug;116(2):263-8</RefSource>
<PMID Version="1">7822241</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10237-41</RefSource>
<PMID Version="1">7479759</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2007 Apr;19(4):1362-75</RefSource>
<PMID Version="1">17416733</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2007 May;19(5):1649-64</RefSource>
<PMID Version="1">17513504</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2007 Jul;144(3):1429-41</RefSource>
<PMID Version="1">17468209</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):14169-74</RefSource>
<PMID Version="1">17709752</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2007 Oct;52(2):197-209</RefSource>
<PMID Version="1">17714430</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2008 May;147(1):179-87</RefSource>
<PMID Version="1">18359841</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2002 Nov;130(3):1109-20</RefSource>
<PMID Version="1">12427978</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2003 Feb;54(383):727-38</RefSource>
<PMID Version="1">12554716</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 1999 Dec;20(6):653-61</RefSource>
<PMID Version="1">10652137</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3741-6</RefSource>
<PMID Version="1">10725357</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2000 Feb;51 Spec No:329-37</RefSource>
<PMID Version="1">10938840</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene. 2000 Nov 27;258(1-2):1-8</RefSource>
<PMID Version="1">11111037</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2001 Aug;13(8):1779-90</RefSource>
<PMID Version="1">11487692</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):1092-7</RefSource>
<PMID Version="1">11805345</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2002 Apr;53(370):801-8</RefSource>
<PMID Version="1">11912223</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2002 Jun;53(373):1421-8</RefSource>
<PMID Version="1">12021289</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Bot. 2002 Jun;89 Spec No:803-11</RefSource>
<PMID Version="1">12102506</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2002 Aug 19;1577(1):1-9</RefSource>
<PMID Version="1">12151089</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Endocrinol. 2002 Aug;29(1):23-39</RefSource>
<PMID Version="1">12200227</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2003 Feb;131(2):430-42</RefSource>
<PMID Version="1">12586868</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4921-6</RefSource>
<PMID Version="1">12676998</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2003 May;54(386):1415-20</RefSource>
<PMID Version="1">12709488</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Photochem Photobiol. 2003 Feb;77(2):226-33</RefSource>
<PMID Version="1">12785063</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2003 Dec;36(5):577-88</RefSource>
<PMID Version="1">14617060</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2003 Dec;36(5):629-42</RefSource>
<PMID Version="1">14617064</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Physiol. 2003 Dec;44(12):1368-77</RefSource>
<PMID Version="1">14701932</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biotechniques. 2004 Jan;36(1):54-6, 58-60</RefSource>
<PMID Version="1">14740484</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2004 Feb;134(2):824-37</RefSource>
<PMID Version="1">14739348</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2004 Mar 19;279(12):11736-43</RefSource>
<PMID Version="1">14722088</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2004 Apr;38(1):49-59</RefSource>
<PMID Version="1">15053759</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2004 Apr;16(4):887-96</RefSource>
<PMID Version="1">15031408</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phytochemistry. 2004 May;65(9):1231-8</RefSource>
<PMID Version="1">15184007</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2004 Sep;39(5):715-33</RefSource>
<PMID Version="1">15315634</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1995 Dec 22;270(5244):1986-8</RefSource>
<PMID Version="1">8592746</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 1997 Feb 3;16(3):659-71</RefSource>
<PMID Version="1">9034347</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 1998 Mar;10(3):359-70</RefSource>
<PMID Version="1">9501110</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1998 Nov 13;273(46):30651-9</RefSource>
<PMID Version="1">9804838</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 1998 Nov;16(3):345-53</RefSource>
<PMID Version="1">9881155</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Biochem. 1999 Mar;260(2):453-60</RefSource>
<PMID Version="1">10095781</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2004 Dec;55(408):2541-8</RefSource>
<PMID Version="1">15475376</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2005 Jan;41(2):212-20</RefSource>
<PMID Version="1">15634198</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Mol Biol. 2005 Feb;57(3):375-91</RefSource>
<PMID Version="1">15830128</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome. 2005 Apr;48(2):347-51</RefSource>
<PMID Version="1">15838558</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2005 Jun;17(6):1829-38</RefSource>
<PMID Version="1">15879560</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2005 Jul;56(417):1785-96</RefSource>
<PMID Version="1">15883131</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Mol Biol. 2005 Mar;57(5):709-30</RefSource>
<PMID Version="1">15988565</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2006 Apr;140(4):1437-50</RefSource>
<PMID Version="1">16500996</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2006 May;46(3):414-25</RefSource>
<PMID Version="1">16623902</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Plant Biol. 2006;57:55-77</RefSource>
<PMID Version="1">16669755</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Agric Food Chem. 2006 May 31;54(11):4035-40</RefSource>
<PMID Version="1">16719531</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol Biochem. 2006 Feb-Mar;44(2-3):125-31</RefSource>
<PMID Version="1">16644230</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2006 Jun;141(2):436-45</RefSource>
<PMID Version="1">16603662</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Agric Food Chem. 2006 Jun 28;54(13):4888-95</RefSource>
<PMID Version="1">16787044</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Plant Biol. 2006 Aug;9(4):436-42</RefSource>
<PMID Version="1">16759898</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2006 Aug;141(4):1264-73</RefSource>
<PMID Version="1">16778010</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2006 Sep;29(9):1686-702</RefSource>
<PMID Version="1">16913859</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Mol Biol. 2006 Aug;61(6):829-44</RefSource>
<PMID Version="1">16927199</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2006 Sep;142(1):75-87</RefSource>
<PMID Version="1">16829586</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Mol Biol. 2006 Nov;62(4-5):513-27</RefSource>
<PMID Version="1">16897468</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2006;172(4):592-7</RefSource>
<PMID Version="1">17096785</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2007 Jan 5;315(5808):73</RefSource>
<PMID Version="1">17204643</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2007 Mar;19(3):1007-22</RefSource>
<PMID Version="1">17369368</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002265" MajorTopicYN="N">Carboxylic Ester Hydrolases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032084" MajorTopicYN="N">Citrus sinensis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015180" MajorTopicYN="N">Electrophoresis, Gel, Two-Dimensional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005030" MajorTopicYN="N">Ethylenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005638" MajorTopicYN="N">Fruit</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC2442528</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>9</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18467459</ArticleId>
<ArticleId IdType="pii">pp.108.119917</ArticleId>
<ArticleId IdType="doi">10.1104/pp.108.119917</ArticleId>
<ArticleId IdType="pmc">PMC2442528</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A42 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000A42 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:18467459
   |texte=   An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:18467459" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024