Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural analysis and involvement in plant innate immunity of Xanthomonas axonopodis pv. citri lipopolysaccharide.

Identifieur interne : 000720 ( PubMed/Corpus ); précédent : 000719; suivant : 000721

Structural analysis and involvement in plant innate immunity of Xanthomonas axonopodis pv. citri lipopolysaccharide.

Auteurs : Adriana Casabuono ; Silvana Petrocelli ; Jorgelina Ottado ; Elena G. Orellano ; Alicia S. Couto

Source :

RBID : pubmed:21596742

English descriptors

Abstract

Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, provoking defoliation and premature fruit drop with concomitant economical damage. In plant pathogenic bacteria, lipopolysaccharides are important virulence factors, and they are being increasingly recognized as major pathogen-associated molecular patterns for plants. In general, three domains are recognized in a lipopolysaccharide: the hydrophobic lipid A, the hydrophilic O-antigen polysaccharide, and the core oligosaccharide, connecting lipid A and O-antigen. In this work, we have determined the structure of purified lipopolysaccharides obtained from Xanthomonas axonopodis pv. citri wild type and a mutant of the O-antigen ABC transporter encoded by the wzt gene. High pH anion exchange chromatography and matrix-assisted laser desorption/ionization mass spectrum analysis were performed, enabling determination of the structure not only of the released oligosaccharides and lipid A moieties but also the intact lipopolysaccharides. The results demonstrate that Xac wild type and Xacwzt LPSs are composed mainly of a penta- or tetra-acylated diglucosamine backbone attached to either two pyrophosphorylethanolamine groups or to one pyrophosphorylethanolamine group and one phosphorylethanolamine group. The core region consists of a branched oligosaccharide formed by Kdo₂Hex₆GalA₃Fuc3NAcRha₄ and two phosphate groups. As expected, the presence of a rhamnose homo-oligosaccharide as O-antigen was determined only in the Xac wild type lipopolysaccharide. In addition, we have examined how lipopolysaccharides from Xac function in the pathogenesis process. We analyzed the response of the different lipopolysaccharides during the stomata aperture closure cycle, the callose deposition, the expression of defense-related genes, and reactive oxygen species production in citrus leaves, suggesting a functional role of the O-antigen from Xac lipopolysaccharides in the basal response.

DOI: 10.1074/jbc.M110.186049
PubMed: 21596742

Links to Exploration step

pubmed:21596742

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural analysis and involvement in plant innate immunity of Xanthomonas axonopodis pv. citri lipopolysaccharide.</title>
<author>
<name sortKey="Casabuono, Adriana" sort="Casabuono, Adriana" uniqKey="Casabuono A" first="Adriana" last="Casabuono">Adriana Casabuono</name>
<affiliation>
<nlm:affiliation>Centro de Investigaciones en Hidratos de Carbono, Departamento de Química Orgánica, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Petrocelli, Silvana" sort="Petrocelli, Silvana" uniqKey="Petrocelli S" first="Silvana" last="Petrocelli">Silvana Petrocelli</name>
</author>
<author>
<name sortKey="Ottado, Jorgelina" sort="Ottado, Jorgelina" uniqKey="Ottado J" first="Jorgelina" last="Ottado">Jorgelina Ottado</name>
</author>
<author>
<name sortKey="Orellano, Elena G" sort="Orellano, Elena G" uniqKey="Orellano E" first="Elena G" last="Orellano">Elena G. Orellano</name>
</author>
<author>
<name sortKey="Couto, Alicia S" sort="Couto, Alicia S" uniqKey="Couto A" first="Alicia S" last="Couto">Alicia S. Couto</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21596742</idno>
<idno type="pmid">21596742</idno>
<idno type="doi">10.1074/jbc.M110.186049</idno>
<idno type="wicri:Area/PubMed/Corpus">000720</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural analysis and involvement in plant innate immunity of Xanthomonas axonopodis pv. citri lipopolysaccharide.</title>
<author>
<name sortKey="Casabuono, Adriana" sort="Casabuono, Adriana" uniqKey="Casabuono A" first="Adriana" last="Casabuono">Adriana Casabuono</name>
<affiliation>
<nlm:affiliation>Centro de Investigaciones en Hidratos de Carbono, Departamento de Química Orgánica, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Petrocelli, Silvana" sort="Petrocelli, Silvana" uniqKey="Petrocelli S" first="Silvana" last="Petrocelli">Silvana Petrocelli</name>
</author>
<author>
<name sortKey="Ottado, Jorgelina" sort="Ottado, Jorgelina" uniqKey="Ottado J" first="Jorgelina" last="Ottado">Jorgelina Ottado</name>
</author>
<author>
<name sortKey="Orellano, Elena G" sort="Orellano, Elena G" uniqKey="Orellano E" first="Elena G" last="Orellano">Elena G. Orellano</name>
</author>
<author>
<name sortKey="Couto, Alicia S" sort="Couto, Alicia S" uniqKey="Couto A" first="Alicia S" last="Couto">Alicia S. Couto</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>ATP-Binding Cassette Transporters (chemistry)</term>
<term>ATP-Binding Cassette Transporters (genetics)</term>
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Carbohydrate Sequence</term>
<term>Citrus sinensis (anatomy & histology)</term>
<term>Citrus sinensis (genetics)</term>
<term>Citrus sinensis (immunology)</term>
<term>Citrus sinensis (microbiology)</term>
<term>Gene Expression Regulation, Plant (immunology)</term>
<term>Host-Pathogen Interactions</term>
<term>Immunity, Innate (genetics)</term>
<term>Lipopolysaccharides (biosynthesis)</term>
<term>Lipopolysaccharides (chemistry)</term>
<term>Lipopolysaccharides (isolation & purification)</term>
<term>Lipopolysaccharides (metabolism)</term>
<term>Molecular Sequence Data</term>
<term>Peroxides (metabolism)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (immunology)</term>
<term>Plant Leaves (microbiology)</term>
<term>Plant Stomata (anatomy & histology)</term>
<term>Plant Stomata (immunology)</term>
<term>Plant Stomata (microbiology)</term>
<term>Xanthomonas axonopodis (metabolism)</term>
<term>Xanthomonas axonopodis (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Lipopolysaccharides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Lipopolysaccharides</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Citrus sinensis</term>
<term>Plant Stomata</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>ATP-Binding Cassette Transporters</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>ATP-Binding Cassette Transporters</term>
<term>Bacterial Proteins</term>
<term>Citrus sinensis</term>
<term>Immunity, Innate</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Citrus sinensis</term>
<term>Gene Expression Regulation, Plant</term>
<term>Plant Leaves</term>
<term>Plant Stomata</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Lipopolysaccharides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Lipopolysaccharides</term>
<term>Peroxides</term>
<term>Xanthomonas axonopodis</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Citrus sinensis</term>
<term>Plant Leaves</term>
<term>Plant Stomata</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Xanthomonas axonopodis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Carbohydrate Sequence</term>
<term>Host-Pathogen Interactions</term>
<term>Molecular Sequence Data</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, provoking defoliation and premature fruit drop with concomitant economical damage. In plant pathogenic bacteria, lipopolysaccharides are important virulence factors, and they are being increasingly recognized as major pathogen-associated molecular patterns for plants. In general, three domains are recognized in a lipopolysaccharide: the hydrophobic lipid A, the hydrophilic O-antigen polysaccharide, and the core oligosaccharide, connecting lipid A and O-antigen. In this work, we have determined the structure of purified lipopolysaccharides obtained from Xanthomonas axonopodis pv. citri wild type and a mutant of the O-antigen ABC transporter encoded by the wzt gene. High pH anion exchange chromatography and matrix-assisted laser desorption/ionization mass spectrum analysis were performed, enabling determination of the structure not only of the released oligosaccharides and lipid A moieties but also the intact lipopolysaccharides. The results demonstrate that Xac wild type and Xacwzt LPSs are composed mainly of a penta- or tetra-acylated diglucosamine backbone attached to either two pyrophosphorylethanolamine groups or to one pyrophosphorylethanolamine group and one phosphorylethanolamine group. The core region consists of a branched oligosaccharide formed by Kdo₂Hex₆GalA₃Fuc3NAcRha₄ and two phosphate groups. As expected, the presence of a rhamnose homo-oligosaccharide as O-antigen was determined only in the Xac wild type lipopolysaccharide. In addition, we have examined how lipopolysaccharides from Xac function in the pathogenesis process. We analyzed the response of the different lipopolysaccharides during the stomata aperture closure cycle, the callose deposition, the expression of defense-related genes, and reactive oxygen species production in citrus leaves, suggesting a functional role of the O-antigen from Xac lipopolysaccharides in the basal response.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21596742</PMID>
<DateCreated>
<Year>2011</Year>
<Month>7</Month>
<Day>19</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>09</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>2</Month>
<Day>4</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>286</Volume>
<Issue>29</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jul</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J. Biol. Chem.</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural analysis and involvement in plant innate immunity of Xanthomonas axonopodis pv. citri lipopolysaccharide.</ArticleTitle>
<Pagination>
<MedlinePgn>25628-43</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M110.186049</ELocationID>
<Abstract>
<AbstractText>Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, provoking defoliation and premature fruit drop with concomitant economical damage. In plant pathogenic bacteria, lipopolysaccharides are important virulence factors, and they are being increasingly recognized as major pathogen-associated molecular patterns for plants. In general, three domains are recognized in a lipopolysaccharide: the hydrophobic lipid A, the hydrophilic O-antigen polysaccharide, and the core oligosaccharide, connecting lipid A and O-antigen. In this work, we have determined the structure of purified lipopolysaccharides obtained from Xanthomonas axonopodis pv. citri wild type and a mutant of the O-antigen ABC transporter encoded by the wzt gene. High pH anion exchange chromatography and matrix-assisted laser desorption/ionization mass spectrum analysis were performed, enabling determination of the structure not only of the released oligosaccharides and lipid A moieties but also the intact lipopolysaccharides. The results demonstrate that Xac wild type and Xacwzt LPSs are composed mainly of a penta- or tetra-acylated diglucosamine backbone attached to either two pyrophosphorylethanolamine groups or to one pyrophosphorylethanolamine group and one phosphorylethanolamine group. The core region consists of a branched oligosaccharide formed by Kdo₂Hex₆GalA₃Fuc3NAcRha₄ and two phosphate groups. As expected, the presence of a rhamnose homo-oligosaccharide as O-antigen was determined only in the Xac wild type lipopolysaccharide. In addition, we have examined how lipopolysaccharides from Xac function in the pathogenesis process. We analyzed the response of the different lipopolysaccharides during the stomata aperture closure cycle, the callose deposition, the expression of defense-related genes, and reactive oxygen species production in citrus leaves, suggesting a functional role of the O-antigen from Xac lipopolysaccharides in the basal response.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Casabuono</LastName>
<ForeName>Adriana</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Centro de Investigaciones en Hidratos de Carbono, Departamento de Química Orgánica, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Petrocelli</LastName>
<ForeName>Silvana</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ottado</LastName>
<ForeName>Jorgelina</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Orellano</LastName>
<ForeName>Elena G</ForeName>
<Initials>EG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Couto</LastName>
<ForeName>Alicia S</ForeName>
<Initials>AS</Initials>
</Author>
</AuthorList>
<Language>ENG</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>May</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008070">Lipopolysaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010545">Peroxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C108433">Wzt protein, bacteria</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 2005 Mar 2;127(8):2414-6</RefSource>
<PMID Version="1">15724995</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Microbiol. 2004 Dec;2(12):954-66</RefSource>
<PMID Version="1">15550941</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2005 Sep 30;280(39):33660-8</RefSource>
<PMID Version="1">16048996</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant Microbe Interact. 2006 Mar;19(3):342-9</RefSource>
<PMID Version="1">16570663</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioessays. 2006 Sep;28(9):880-9</RefSource>
<PMID Version="1">16937346</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2006 Sep 8;126(5):969-80</RefSource>
<PMID Version="1">16959575</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Mol Biol. 2006;347:237-52</RefSource>
<PMID Version="1">17072014</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2007 May;50(3):500-13</RefSource>
<PMID Version="1">17419843</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2007 Nov 2;282(44):32338-48</RefSource>
<PMID Version="1">17761682</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Evol Biol. 2007;7:243</RefSource>
<PMID Version="1">18053269</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chembiochem. 2008 Apr 14;9(6):896-904</RefSource>
<PMID Version="1">18350528</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Microbiol. 2008;8:87</RefSource>
<PMID Version="1">18518965</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18631-6</RefSource>
<PMID Version="1">19015524</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mass Spectrom Rev. 2009 Mar-Apr;28(2):273-361</RefSource>
<PMID Version="1">18825656</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Lipid Res. 2009 Mar;50(3):424-38</RefSource>
<PMID Version="1">18832773</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Carbohydr Res. 2009 Mar 10;344(4):479-83</RefSource>
<PMID Version="1">19128797</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEMS Microbiol Rev. 2010 Mar;34(2):107-33</RefSource>
<PMID Version="1">19925633</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Biotechnol. 2010 Oct;21(5):599-603</RefSource>
<PMID Version="1">20573499</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Plant Physiol. 2011 Mar 1;168(4):382-91</RefSource>
<PMID Version="1">20828873</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEMS Microbiol Lett. 1999 Dec 1;181(1):49-53</RefSource>
<PMID Version="1">10564788</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Carbohydr Res. 2000 Jan 12;323(1-4):235-9</RefSource>
<PMID Version="1">10782308</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mass Spectrom. 2000 May;35(5):647-50</RefSource>
<PMID Version="1">10800055</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Mol Biol. 2000;145:311-25</RefSource>
<PMID Version="1">10820729</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 2001 Jun;213(2):214-22</RefSource>
<PMID Version="1">11469586</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Chem. 2001 Aug 15;73(16):3804-7</RefSource>
<PMID Version="1">11534700</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Genet Genomics. 2001 Sep;266(1):79-95</RefSource>
<PMID Version="1">11589581</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Agric Food Chem. 2002 Jan 16;50(2):248-54</RefSource>
<PMID Version="1">11782190</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 Feb 28;415(6875):977-83</RefSource>
<PMID Version="1">11875555</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 May 23;417(6887):459-63</RefSource>
<PMID Version="1">12024217</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Biochem. 2002;71:635-700</RefSource>
<PMID Version="1">12045108</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Phytopathol. 2002;40:169-89</RefSource>
<PMID Version="1">12147758</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Biochem. 2002 Sep;269(17):4185-93</RefSource>
<PMID Version="1">12199696</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Carbohydr Res. 2003 Jan 31;338(3):277-81</RefSource>
<PMID Version="1">12543561</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2004 Apr 15;428(6984):764-7</RefSource>
<PMID Version="1">15085136</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant Microbe Interact. 2004 Jul;17(7):805-15</RefSource>
<PMID Version="1">15242175</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Immunol. 2004 Nov;41(11):1055-62</RefSource>
<PMID Version="1">15476917</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Bacteriol. 1975 Jun;122(3):1180-8</RefSource>
<PMID Version="1">1150619</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 1980 Oct 10;8(19):4321-5</RefSource>
<PMID Version="1">7433111</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Biochem. 1982 Jan 1;119(1):115-9</RefSource>
<PMID Version="1">6176137</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1982 Oct 10;257(19):11808-15</RefSource>
<PMID Version="1">6749846</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Bacteriol. 1992 Mar;174(6):1793-800</RefSource>
<PMID Version="1">1548229</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 1991 Jan;3(1):61-72</RefSource>
<PMID Version="1">1824335</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant Microbe Interact. 1995 Sep-Oct;8(5):768-77</RefSource>
<PMID Version="1">7579621</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant Microbe Interact. 1995 Sep-Oct;8(5):778-80</RefSource>
<PMID Version="1">7579622</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene. 1995 Dec 1;166(1):175-6</RefSource>
<PMID Version="1">8529885</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 1999 Jan;65(1):278-82</RefSource>
<PMID Version="1">9872790</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 1999 May;18(3):265-76</RefSource>
<PMID Version="1">10377992</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15811-6</RefSource>
<PMID Version="1">15498873</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant Microbe Interact. 2005 Jul;18(7):674-81</RefSource>
<PMID Version="1">16042013</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018528" MajorTopicYN="N">ATP-Binding Cassette Transporters</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002240" MajorTopicYN="N">Carbohydrate Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032084" MajorTopicYN="N">Citrus sinensis</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="Y">Immunity, Innate</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008070" MajorTopicYN="N">Lipopolysaccharides</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010545" MajorTopicYN="N">Peroxides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054046" MajorTopicYN="N">Plant Stomata</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053532" MajorTopicYN="N">Xanthomonas axonopodis</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3138316</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>9</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21596742</ArticleId>
<ArticleId IdType="pii">M110.186049</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M110.186049</ArticleId>
<ArticleId IdType="pmc">PMC3138316</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000720 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000720 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21596742
   |texte=   Structural analysis and involvement in plant innate immunity of Xanthomonas axonopodis pv. citri lipopolysaccharide.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:21596742" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024