Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck].

Identifieur interne : 000688 ( PubMed/Corpus ); précédent : 000687; suivant : 000689

A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck].

Auteurs : Yunliu Zeng ; Zhiyong Pan ; Yuduan Ding ; Andan Zhu ; Hongbo Cao ; Qiang Xu ; Xiuxin Deng

Source :

RBID : pubmed:21841170

English descriptors

Abstract

Here, a comprehensive proteomic analysis of the chromoplasts purified from sweet orange using Nycodenz density gradient centrifugation is reported. A GeLC-MS/MS shotgun approach was used to identify the proteins of pooled chromoplast samples. A total of 493 proteins were identified from purified chromoplasts, of which 418 are putative plastid proteins based on in silico sequence homology and functional analyses. Based on the predicted functions of these identified plastid proteins, a large proportion (∼60%) of the chromoplast proteome of sweet orange is constituted by proteins involved in carbohydrate metabolism, amino acid/protein synthesis, and secondary metabolism. Of note, HDS (hydroxymethylbutenyl 4-diphosphate synthase), PAP (plastid-lipid-associated protein), and psHSPs (plastid small heat shock proteins) involved in the synthesis or storage of carotenoid and stress response are among the most abundant proteins identified. A comparison of chromoplast proteomes between sweet orange and tomato suggested a high level of conservation in a broad range of metabolic pathways. However, the citrus chromoplast was characterized by more extensive carotenoid synthesis, extensive amino acid synthesis without nitrogen assimilation, and evidence for lipid metabolism concerning jasmonic acid synthesis. In conclusion, this study provides an insight into the major metabolic pathways as well as some unique characteristics of the sweet orange chromoplasts at the whole proteome level.

DOI: 10.1093/jxb/err140
PubMed: 21841170

Links to Exploration step

pubmed:21841170

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck].</title>
<author>
<name sortKey="Zeng, Yunliu" sort="Zeng, Yunliu" uniqKey="Zeng Y" first="Yunliu" last="Zeng">Yunliu Zeng</name>
<affiliation>
<nlm:affiliation>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pan, Zhiyong" sort="Pan, Zhiyong" uniqKey="Pan Z" first="Zhiyong" last="Pan">Zhiyong Pan</name>
</author>
<author>
<name sortKey="Ding, Yuduan" sort="Ding, Yuduan" uniqKey="Ding Y" first="Yuduan" last="Ding">Yuduan Ding</name>
</author>
<author>
<name sortKey="Zhu, Andan" sort="Zhu, Andan" uniqKey="Zhu A" first="Andan" last="Zhu">Andan Zhu</name>
</author>
<author>
<name sortKey="Cao, Hongbo" sort="Cao, Hongbo" uniqKey="Cao H" first="Hongbo" last="Cao">Hongbo Cao</name>
</author>
<author>
<name sortKey="Xu, Qiang" sort="Xu, Qiang" uniqKey="Xu Q" first="Qiang" last="Xu">Qiang Xu</name>
</author>
<author>
<name sortKey="Deng, Xiuxin" sort="Deng, Xiuxin" uniqKey="Deng X" first="Xiuxin" last="Deng">Xiuxin Deng</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21841170</idno>
<idno type="pmid">21841170</idno>
<idno type="doi">10.1093/jxb/err140</idno>
<idno type="wicri:Area/PubMed/Corpus">000688</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck].</title>
<author>
<name sortKey="Zeng, Yunliu" sort="Zeng, Yunliu" uniqKey="Zeng Y" first="Yunliu" last="Zeng">Yunliu Zeng</name>
<affiliation>
<nlm:affiliation>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pan, Zhiyong" sort="Pan, Zhiyong" uniqKey="Pan Z" first="Zhiyong" last="Pan">Zhiyong Pan</name>
</author>
<author>
<name sortKey="Ding, Yuduan" sort="Ding, Yuduan" uniqKey="Ding Y" first="Yuduan" last="Ding">Yuduan Ding</name>
</author>
<author>
<name sortKey="Zhu, Andan" sort="Zhu, Andan" uniqKey="Zhu A" first="Andan" last="Zhu">Andan Zhu</name>
</author>
<author>
<name sortKey="Cao, Hongbo" sort="Cao, Hongbo" uniqKey="Cao H" first="Hongbo" last="Cao">Hongbo Cao</name>
</author>
<author>
<name sortKey="Xu, Qiang" sort="Xu, Qiang" uniqKey="Xu Q" first="Qiang" last="Xu">Qiang Xu</name>
</author>
<author>
<name sortKey="Deng, Xiuxin" sort="Deng, Xiuxin" uniqKey="Deng X" first="Xiuxin" last="Deng">Xiuxin Deng</name>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Blotting, Western</term>
<term>Chloroplast Proteins (metabolism)</term>
<term>Citrus sinensis (metabolism)</term>
<term>Enzymes (metabolism)</term>
<term>Gene Expression Regulation, Plant</term>
<term>Plant Proteins (metabolism)</term>
<term>Plastids (metabolism)</term>
<term>Proteomics (methods)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chloroplast Proteins</term>
<term>Enzymes</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Citrus sinensis</term>
<term>Plastids</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Proteomics</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Blotting, Western</term>
<term>Gene Expression Regulation, Plant</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Here, a comprehensive proteomic analysis of the chromoplasts purified from sweet orange using Nycodenz density gradient centrifugation is reported. A GeLC-MS/MS shotgun approach was used to identify the proteins of pooled chromoplast samples. A total of 493 proteins were identified from purified chromoplasts, of which 418 are putative plastid proteins based on in silico sequence homology and functional analyses. Based on the predicted functions of these identified plastid proteins, a large proportion (∼60%) of the chromoplast proteome of sweet orange is constituted by proteins involved in carbohydrate metabolism, amino acid/protein synthesis, and secondary metabolism. Of note, HDS (hydroxymethylbutenyl 4-diphosphate synthase), PAP (plastid-lipid-associated protein), and psHSPs (plastid small heat shock proteins) involved in the synthesis or storage of carotenoid and stress response are among the most abundant proteins identified. A comparison of chromoplast proteomes between sweet orange and tomato suggested a high level of conservation in a broad range of metabolic pathways. However, the citrus chromoplast was characterized by more extensive carotenoid synthesis, extensive amino acid synthesis without nitrogen assimilation, and evidence for lipid metabolism concerning jasmonic acid synthesis. In conclusion, this study provides an insight into the major metabolic pathways as well as some unique characteristics of the sweet orange chromoplasts at the whole proteome level.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21841170</PMID>
<DateCreated>
<Year>2011</Year>
<Month>11</Month>
<Day>24</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>03</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>2</Month>
<Day>4</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>62</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2011</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J. Exp. Bot.</ISOAbbreviation>
</Journal>
<ArticleTitle>A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck].</ArticleTitle>
<Pagination>
<MedlinePgn>5297-309</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/err140</ELocationID>
<Abstract>
<AbstractText>Here, a comprehensive proteomic analysis of the chromoplasts purified from sweet orange using Nycodenz density gradient centrifugation is reported. A GeLC-MS/MS shotgun approach was used to identify the proteins of pooled chromoplast samples. A total of 493 proteins were identified from purified chromoplasts, of which 418 are putative plastid proteins based on in silico sequence homology and functional analyses. Based on the predicted functions of these identified plastid proteins, a large proportion (∼60%) of the chromoplast proteome of sweet orange is constituted by proteins involved in carbohydrate metabolism, amino acid/protein synthesis, and secondary metabolism. Of note, HDS (hydroxymethylbutenyl 4-diphosphate synthase), PAP (plastid-lipid-associated protein), and psHSPs (plastid small heat shock proteins) involved in the synthesis or storage of carotenoid and stress response are among the most abundant proteins identified. A comparison of chromoplast proteomes between sweet orange and tomato suggested a high level of conservation in a broad range of metabolic pathways. However, the citrus chromoplast was characterized by more extensive carotenoid synthesis, extensive amino acid synthesis without nitrogen assimilation, and evidence for lipid metabolism concerning jasmonic acid synthesis. In conclusion, this study provides an insight into the major metabolic pathways as well as some unique characteristics of the sweet orange chromoplasts at the whole proteome level.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zeng</LastName>
<ForeName>Yunliu</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pan</LastName>
<ForeName>Zhiyong</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ding</LastName>
<ForeName>Yuduan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Andan</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Hongbo</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Qiang</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Deng</LastName>
<ForeName>Xiuxin</ForeName>
<Initials>X</Initials>
</Author>
</AuthorList>
<Language>ENG</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>Aug</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D060365">Chloroplast Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004798">Enzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C421242">hydroxymethylbutenyl 4-diphosphate synthase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2007;58(15-16):4161-71</RefSource>
<PMID Version="1">18182424</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2008 Dec;13(12):619-23</RefSource>
<PMID Version="1">18948055</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2008 Jul;179(2):257-85</RefSource>
<PMID Version="1">19086173</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2009 Jan;37(Database issue):D969-74</RefSource>
<PMID Version="1">18832363</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteomics. 2009 Dec;9(24):5455-70</RefSource>
<PMID Version="1">19834898</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2010 May;61(9):2413-31</RefSource>
<PMID Version="1">20363867</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteomics. 2010 Jun;10(11):2123-37</RefSource>
<PMID Version="1">20336678</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Physiol. 2010 Oct;51(10):1601-11</RefSource>
<PMID Version="1">20801922</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2006 Aug 4;281(31):21660-9</RefSource>
<PMID Version="1">16735503</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Plant Biol. 2006;6:21</RefSource>
<PMID Version="1">17010212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Plant Biol. 2006 Dec;9(6):610-5</RefSource>
<PMID Version="1">17008120</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Physiol. 2006 Dec;47(12):1663-73</RefSource>
<PMID Version="1">17098784</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2007;58(1):11-26</RefSource>
<PMID Version="1">17108152</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2007 Jan;35(Database issue):D213-8</RefSource>
<PMID Version="1">17071959</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 2007 Sep;226(4):989-1005</RefSource>
<PMID Version="1">17541628</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Bot. 2007 Oct;100(4):681-97</RefSource>
<PMID Version="1">17513307</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Plant Physiol. 2007 Dec;164(12):1626-38</RefSource>
<PMID Version="1">17360071</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2000 Jun 23;275(25):19132-8</RefSource>
<PMID Version="1">10764787</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochimie. 2000 Jun-Jul;82(6-7):647-54</RefSource>
<PMID Version="1">10946113</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2001 Aug;13(8):1907-18</RefSource>
<PMID Version="1">11487701</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Stress Chaperones. 2001 Jul;6(3):238-46</RefSource>
<PMID Version="1">11599565</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2002 Jan;14(1):211-36</RefSource>
<PMID Version="1">11826309</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2002 Mar 8;277(10):8354-65</RefSource>
<PMID Version="1">11719511</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2002 Aug;83(2):899-911</RefSource>
<PMID Version="1">12124272</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteomics. 2002 Sep;2(9):1156-68</RefSource>
<PMID Version="1">12362334</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2002 Oct;7(10):451-6</RefSource>
<PMID Version="1">12399180</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Protein Sci. 2002 Dec;11(12):2836-47</RefSource>
<PMID Version="1">12441382</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2002 Dec;32(6):915-25</RefSource>
<PMID Version="1">12492834</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2003 Jun;34(6):802-12</RefSource>
<PMID Version="1">12795700</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2003 Jun;8(6):259-62</RefSource>
<PMID Version="1">12818659</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Proteomics. 2003 May;2(5):325-45</RefSource>
<PMID Version="1">12766230</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2003 Dec;36(5):616-28</RefSource>
<PMID Version="1">14617063</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2004 Feb 6;279(6):4768-81</RefSource>
<PMID Version="1">14593120</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2004 Mar 9;14(5):354-62</RefSource>
<PMID Version="1">15028209</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene. 2004 Mar 31;329:11-6</RefSource>
<PMID Version="1">15033524</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Antioxid Redox Signal. 2009 Apr;11(4):861-905</RefSource>
<PMID Version="1">19239350</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Biol (Stuttg). 2009 Jul;11(4):613-24</RefSource>
<PMID Version="1">19538399</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2009;60(10):2933-43</RefSource>
<PMID Version="1">19584121</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Proteomics. 2009 Aug;8(8):1789-1810</RefSource>
<PMID Version="1">19423572</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Proteomics. 2009 Nov 2;73(1):134-52</RefSource>
<PMID Version="1">19775598</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2004 Apr;134(4):1401-13</RefSource>
<PMID Version="1">15064370</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2004 May 21;279(21):22548-57</RefSource>
<PMID Version="1">15024005</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Bacteriol. 2004 Jun;186(12):3991-9</RefSource>
<PMID Version="1">15175313</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cytobios. 1979;26(103-104):185-91</RefSource>
<PMID Version="1">552307</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 1994 Jan;6(1):119-33</RefSource>
<PMID Version="1">8130642</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7684-9</RefSource>
<PMID Version="1">8755536</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 1998 Aug;117(4):1393-400</RefSource>
<PMID Version="1">9701595</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Proteome Res. 2004 Nov-Dec;3(6):1128-37</RefSource>
<PMID Version="1">15595721</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2005 Apr;10(4):166-9</RefSource>
<PMID Version="1">15817417</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2005 Jun;17(6):1829-38</RefSource>
<PMID Version="1">15879560</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Physiol. 2005 Jun;46(6):985-96</RefSource>
<PMID Version="1">15827031</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Plant Physiol. 2005 Jul;162(7):749-57</RefSource>
<PMID Version="1">16008099</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Dev Biol. 2005;49(5-6):557-77</RefSource>
<PMID Version="1">16096965</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Proteomics. 2005 Aug;4(8):1072-84</RefSource>
<PMID Version="1">15901827</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene. 2005 Jul 18;354:99-109</RefSource>
<PMID Version="1">15979252</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2005 Nov;17(11):2954-65</RefSource>
<PMID Version="1">16243903</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2005 Dec;17(12):3451-69</RefSource>
<PMID Version="1">16258032</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Proteomics. 2006 Jan;5(1):114-33</RefSource>
<PMID Version="1">16207701</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Photosynth Res. 2005 Dec;86(3):345-62</RefSource>
<PMID Version="1">16307301</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Photosynth Res. 2005 Dec;86(3):309-23</RefSource>
<PMID Version="1">16328785</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2006 Mar;140(3):984-97</RefSource>
<PMID Version="1">16461379</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Theor Appl Genet. 2006 May;112(7):1248-57</RefSource>
<PMID Version="1">16474971</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Physiol. 2006 Mar;47(3):432-6</RefSource>
<PMID Version="1">16418230</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2006;57(7):1591-602</RefSource>
<PMID Version="1">16595579</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Plant Biol. 2006;57:599-621</RefSource>
<PMID Version="1">16669775</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Plant Biol. 2006;57:711-38</RefSource>
<PMID Version="1">16669779</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2006 Jun;141(2):391-6</RefSource>
<PMID Version="1">16760493</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell. 2007 Oct;19(10):3170-93</RefSource>
<PMID Version="1">17951448</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060365" MajorTopicYN="N">Chloroplast Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032084" MajorTopicYN="N">Citrus sinensis</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004798" MajorTopicYN="N">Enzymes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018087" MajorTopicYN="N">Plastids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="N">Proteomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3223033</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21841170</ArticleId>
<ArticleId IdType="pii">err140</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/err140</ArticleId>
<ArticleId IdType="pmc">PMC3223033</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000688 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000688 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21841170
   |texte=   A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck].
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:21841170" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024