Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins.

Identifieur interne : 000462 ( PubMed/Corpus ); précédent : 000461; suivant : 000463

A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins.

Auteurs : Bruna Medéia Campos ; Mauricio Luis Sforça ; Andre Luis Berteli Ambrosio ; Mariane Noronha Domingues ; Tatiana De Arruda Campos Brasil De Souza ; João Alexandre Ribeiro Gonçalvez Barbosa ; Adriana Franco Paes Leme ; Carlos Alberto Perez ; Sara Britt-Marie Whittaker ; Mario Tyago Murakami ; Ana Carolina De Matos Zeri ; Celso Eduardo Benedetti

Source :

RBID : pubmed:23709667

English descriptors

Abstract

The citrus (Citrus sinensis) cyclophilin CsCyp is a target of the Xanthomonas citri transcription activator-like effector PthA, required to elicit cankers on citrus. CsCyp binds the citrus thioredoxin CsTdx and the carboxyl-terminal domain of RNA polymerase II and is a divergent cyclophilin that carries the additional loop KSGKPLH, invariable cysteine (Cys) residues Cys-40 and Cys-168, and the conserved glutamate (Glu) Glu-83. Despite the suggested roles in ATP and metal binding, the functions of these unique structural elements remain unknown. Here, we show that the conserved Cys residues form a disulfide bond that inactivates the enzyme, whereas Glu-83, which belongs to the catalytic loop and is also critical for enzyme activity, is anchored to the divergent loop to maintain the active site open. In addition, we demonstrate that Cys-40 and Cys-168 are required for the interaction with CsTdx and that CsCyp binds the citrus carboxyl-terminal domain of RNA polymerase II YSPSAP repeat. Our data support a model where formation of the Cys-40-Cys-168 disulfide bond induces a conformational change that disrupts the interaction of the divergent and catalytic loops, via Glu-83, causing the active site to close. This suggests a new type of allosteric regulation in divergent cyclophilins, involving disulfide bond formation and a loop-displacement mechanism.

DOI: 10.1104/pp.113.218339
PubMed: 23709667

Links to Exploration step

pubmed:23709667

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins.</title>
<author>
<name sortKey="Campos, Bruna Medeia" sort="Campos, Bruna Medeia" uniqKey="Campos B" first="Bruna Medéia" last="Campos">Bruna Medéia Campos</name>
<affiliation>
<nlm:affiliation>Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP CP6192, Brazil.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sforca, Mauricio Luis" sort="Sforca, Mauricio Luis" uniqKey="Sforca M" first="Mauricio Luis" last="Sforça">Mauricio Luis Sforça</name>
</author>
<author>
<name sortKey="Ambrosio, Andre Luis Berteli" sort="Ambrosio, Andre Luis Berteli" uniqKey="Ambrosio A" first="Andre Luis Berteli" last="Ambrosio">Andre Luis Berteli Ambrosio</name>
</author>
<author>
<name sortKey="Domingues, Mariane Noronha" sort="Domingues, Mariane Noronha" uniqKey="Domingues M" first="Mariane Noronha" last="Domingues">Mariane Noronha Domingues</name>
</author>
<author>
<name sortKey="Brasil De Souza, Tatiana De Arruda Campos" sort="Brasil De Souza, Tatiana De Arruda Campos" uniqKey="Brasil De Souza T" first="Tatiana De Arruda Campos" last="Brasil De Souza">Tatiana De Arruda Campos Brasil De Souza</name>
</author>
<author>
<name sortKey="Barbosa, Joao Alexandre Ribeiro Goncalvez" sort="Barbosa, Joao Alexandre Ribeiro Goncalvez" uniqKey="Barbosa J" first="João Alexandre Ribeiro Gonçalvez" last="Barbosa">João Alexandre Ribeiro Gonçalvez Barbosa</name>
</author>
<author>
<name sortKey="Paes Leme, Adriana Franco" sort="Paes Leme, Adriana Franco" uniqKey="Paes Leme A" first="Adriana Franco" last="Paes Leme">Adriana Franco Paes Leme</name>
</author>
<author>
<name sortKey="Perez, Carlos Alberto" sort="Perez, Carlos Alberto" uniqKey="Perez C" first="Carlos Alberto" last="Perez">Carlos Alberto Perez</name>
</author>
<author>
<name sortKey="Whittaker, Sara Britt Marie" sort="Whittaker, Sara Britt Marie" uniqKey="Whittaker S" first="Sara Britt-Marie" last="Whittaker">Sara Britt-Marie Whittaker</name>
</author>
<author>
<name sortKey="Murakami, Mario Tyago" sort="Murakami, Mario Tyago" uniqKey="Murakami M" first="Mario Tyago" last="Murakami">Mario Tyago Murakami</name>
</author>
<author>
<name sortKey="Zeri, Ana Carolina De Matos" sort="Zeri, Ana Carolina De Matos" uniqKey="Zeri A" first="Ana Carolina De Matos" last="Zeri">Ana Carolina De Matos Zeri</name>
</author>
<author>
<name sortKey="Benedetti, Celso Eduardo" sort="Benedetti, Celso Eduardo" uniqKey="Benedetti C" first="Celso Eduardo" last="Benedetti">Celso Eduardo Benedetti</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23709667</idno>
<idno type="pmid">23709667</idno>
<idno type="doi">10.1104/pp.113.218339</idno>
<idno type="wicri:Area/PubMed/Corpus">000462</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins.</title>
<author>
<name sortKey="Campos, Bruna Medeia" sort="Campos, Bruna Medeia" uniqKey="Campos B" first="Bruna Medéia" last="Campos">Bruna Medéia Campos</name>
<affiliation>
<nlm:affiliation>Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP CP6192, Brazil.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sforca, Mauricio Luis" sort="Sforca, Mauricio Luis" uniqKey="Sforca M" first="Mauricio Luis" last="Sforça">Mauricio Luis Sforça</name>
</author>
<author>
<name sortKey="Ambrosio, Andre Luis Berteli" sort="Ambrosio, Andre Luis Berteli" uniqKey="Ambrosio A" first="Andre Luis Berteli" last="Ambrosio">Andre Luis Berteli Ambrosio</name>
</author>
<author>
<name sortKey="Domingues, Mariane Noronha" sort="Domingues, Mariane Noronha" uniqKey="Domingues M" first="Mariane Noronha" last="Domingues">Mariane Noronha Domingues</name>
</author>
<author>
<name sortKey="Brasil De Souza, Tatiana De Arruda Campos" sort="Brasil De Souza, Tatiana De Arruda Campos" uniqKey="Brasil De Souza T" first="Tatiana De Arruda Campos" last="Brasil De Souza">Tatiana De Arruda Campos Brasil De Souza</name>
</author>
<author>
<name sortKey="Barbosa, Joao Alexandre Ribeiro Goncalvez" sort="Barbosa, Joao Alexandre Ribeiro Goncalvez" uniqKey="Barbosa J" first="João Alexandre Ribeiro Gonçalvez" last="Barbosa">João Alexandre Ribeiro Gonçalvez Barbosa</name>
</author>
<author>
<name sortKey="Paes Leme, Adriana Franco" sort="Paes Leme, Adriana Franco" uniqKey="Paes Leme A" first="Adriana Franco" last="Paes Leme">Adriana Franco Paes Leme</name>
</author>
<author>
<name sortKey="Perez, Carlos Alberto" sort="Perez, Carlos Alberto" uniqKey="Perez C" first="Carlos Alberto" last="Perez">Carlos Alberto Perez</name>
</author>
<author>
<name sortKey="Whittaker, Sara Britt Marie" sort="Whittaker, Sara Britt Marie" uniqKey="Whittaker S" first="Sara Britt-Marie" last="Whittaker">Sara Britt-Marie Whittaker</name>
</author>
<author>
<name sortKey="Murakami, Mario Tyago" sort="Murakami, Mario Tyago" uniqKey="Murakami M" first="Mario Tyago" last="Murakami">Mario Tyago Murakami</name>
</author>
<author>
<name sortKey="Zeri, Ana Carolina De Matos" sort="Zeri, Ana Carolina De Matos" uniqKey="Zeri A" first="Ana Carolina De Matos" last="Zeri">Ana Carolina De Matos Zeri</name>
</author>
<author>
<name sortKey="Benedetti, Celso Eduardo" sort="Benedetti, Celso Eduardo" uniqKey="Benedetti C" first="Celso Eduardo" last="Benedetti">Celso Eduardo Benedetti</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Catalytic Domain</term>
<term>Citrus sinensis (metabolism)</term>
<term>Conserved Sequence</term>
<term>Crystallography, X-Ray</term>
<term>Cyclophilins (chemistry)</term>
<term>Cyclophilins (genetics)</term>
<term>Cyclophilins (metabolism)</term>
<term>Cyclosporine (chemistry)</term>
<term>Cyclosporine (metabolism)</term>
<term>Cysteine (metabolism)</term>
<term>Disulfides (metabolism)</term>
<term>Glutamic Acid (metabolism)</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Oxidation-Reduction</term>
<term>Protein Conformation</term>
<term>RNA Polymerase II (metabolism)</term>
<term>Thioredoxins (metabolism)</term>
<term>Zinc (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cyclophilins</term>
<term>Cyclosporine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cyclophilins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Citrus sinensis</term>
<term>Cyclophilins</term>
<term>Cyclosporine</term>
<term>Cysteine</term>
<term>Disulfides</term>
<term>Glutamic Acid</term>
<term>RNA Polymerase II</term>
<term>Thioredoxins</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Catalytic Domain</term>
<term>Conserved Sequence</term>
<term>Crystallography, X-Ray</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Oxidation-Reduction</term>
<term>Protein Conformation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The citrus (Citrus sinensis) cyclophilin CsCyp is a target of the Xanthomonas citri transcription activator-like effector PthA, required to elicit cankers on citrus. CsCyp binds the citrus thioredoxin CsTdx and the carboxyl-terminal domain of RNA polymerase II and is a divergent cyclophilin that carries the additional loop KSGKPLH, invariable cysteine (Cys) residues Cys-40 and Cys-168, and the conserved glutamate (Glu) Glu-83. Despite the suggested roles in ATP and metal binding, the functions of these unique structural elements remain unknown. Here, we show that the conserved Cys residues form a disulfide bond that inactivates the enzyme, whereas Glu-83, which belongs to the catalytic loop and is also critical for enzyme activity, is anchored to the divergent loop to maintain the active site open. In addition, we demonstrate that Cys-40 and Cys-168 are required for the interaction with CsTdx and that CsCyp binds the citrus carboxyl-terminal domain of RNA polymerase II YSPSAP repeat. Our data support a model where formation of the Cys-40-Cys-168 disulfide bond induces a conformational change that disrupts the interaction of the divergent and catalytic loops, via Glu-83, causing the active site to close. This suggests a new type of allosteric regulation in divergent cyclophilins, involving disulfide bond formation and a loop-displacement mechanism.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23709667</PMID>
<DateCreated>
<Year>2013</Year>
<Month>7</Month>
<Day>4</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>02</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>4</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>162</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins.</ArticleTitle>
<Pagination>
<MedlinePgn>1311-23</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.113.218339</ELocationID>
<Abstract>
<AbstractText>The citrus (Citrus sinensis) cyclophilin CsCyp is a target of the Xanthomonas citri transcription activator-like effector PthA, required to elicit cankers on citrus. CsCyp binds the citrus thioredoxin CsTdx and the carboxyl-terminal domain of RNA polymerase II and is a divergent cyclophilin that carries the additional loop KSGKPLH, invariable cysteine (Cys) residues Cys-40 and Cys-168, and the conserved glutamate (Glu) Glu-83. Despite the suggested roles in ATP and metal binding, the functions of these unique structural elements remain unknown. Here, we show that the conserved Cys residues form a disulfide bond that inactivates the enzyme, whereas Glu-83, which belongs to the catalytic loop and is also critical for enzyme activity, is anchored to the divergent loop to maintain the active site open. In addition, we demonstrate that Cys-40 and Cys-168 are required for the interaction with CsTdx and that CsCyp binds the citrus carboxyl-terminal domain of RNA polymerase II YSPSAP repeat. Our data support a model where formation of the Cys-40-Cys-168 disulfide bond induces a conformational change that disrupts the interaction of the divergent and catalytic loops, via Glu-83, causing the active site to close. This suggests a new type of allosteric regulation in divergent cyclophilins, involving disulfide bond formation and a loop-displacement mechanism.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Campos</LastName>
<ForeName>Bruna Medéia</ForeName>
<Initials>BM</Initials>
<AffiliationInfo>
<Affiliation>Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP CP6192, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sforça</LastName>
<ForeName>Mauricio Luis</ForeName>
<Initials>ML</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ambrosio</LastName>
<ForeName>Andre Luis Berteli</ForeName>
<Initials>AL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Domingues</LastName>
<ForeName>Mariane Noronha</ForeName>
<Initials>MN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brasil de Souza</LastName>
<ForeName>Tatiana de Arruda Campos</ForeName>
<Initials>Tde A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Barbosa</LastName>
<ForeName>João Alexandre Ribeiro Gonçalvez</ForeName>
<Initials>JA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Paes Leme</LastName>
<ForeName>Adriana Franco</ForeName>
<Initials>AF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Perez</LastName>
<ForeName>Carlos Alberto</ForeName>
<Initials>CA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Whittaker</LastName>
<ForeName>Sara Britt-Marie</ForeName>
<Initials>SB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Murakami</LastName>
<ForeName>Mario Tyago</ForeName>
<Initials>MT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zeri</LastName>
<ForeName>Ana Carolina de Matos</ForeName>
<Initials>AC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Benedetti</LastName>
<ForeName>Celso Eduardo</ForeName>
<Initials>CE</Initials>
</Author>
</AuthorList>
<Language>ENG</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>4JJM</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>May</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3KX376GY7L</RegistryNumber>
<NameOfSubstance UI="D018698">Glutamic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>83HN0GTJ6D</RegistryNumber>
<NameOfSubstance UI="D016572">Cyclosporine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.-</RegistryNumber>
<NameOfSubstance UI="D012319">RNA Polymerase II</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.2.1.-</RegistryNumber>
<NameOfSubstance UI="D021983">Cyclophilins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>J41CSQ7QDS</RegistryNumber>
<NameOfSubstance UI="D015032">Zinc</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):72-82</RefSource>
<PMID Version="1">16369096</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2005;6(7):226</RefSource>
<PMID Version="1">15998457</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Protein Expr Purif. 2006 Dec;50(2):215-22</RefSource>
<PMID Version="1">16879982</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem J. 2007 Jan 1;401(1):287-97</RefSource>
<PMID Version="1">16928193</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Bioinformatics. 2007;8:133</RefSource>
<PMID Version="1">17448237</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2007 Aug 24;282(34):24851-7</RefSource>
<PMID Version="1">17591771</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16386-91</RefSource>
<PMID Version="1">18845687</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell. 2009 Nov 25;36(4):541-6</RefSource>
<PMID Version="1">19941815</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2010;8(7):e1000439</RefSource>
<PMID Version="1">20676357</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Plant Pathol. 2010 Sep;11(5):663-75</RefSource>
<PMID Version="1">20696004</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Virology. 2011 Mar 15;411(2):374-82</RefSource>
<PMID Version="1">21295323</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W249-53</RefSource>
<PMID Version="1">21622962</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Antioxid Redox Signal. 2011 Aug 1;15(3):795-815</RefSource>
<PMID Version="1">20969484</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2012 Jan 18;31(2):267-78</RefSource>
<PMID Version="1">22045333</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 2012 Sep;32(17):3594-607</RefSource>
<PMID Version="1">22778132</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(7):e41553</RefSource>
<PMID Version="1">22911812</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant J. 2012 Sep;71(5):712-23</RefSource>
<PMID Version="1">22463079</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2012 Dec 14;287(51):43071-82</RefSource>
<PMID Version="1">23105116</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2013 Feb;197(3):751-62</RefSource>
<PMID Version="1">23206262</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2013 Feb 1;41(3):1783-96</RefSource>
<PMID Version="1">23248006</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Crystallogr D Biol Crystallogr. 2013 Apr;69(Pt 4):555-63</RefSource>
<PMID Version="1">23519664</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1999 Dec 3;274(49):34877-83</RefSource>
<PMID Version="1">10574961</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2000 Apr 21;298(1):123-33</RefSource>
<PMID Version="1">10756109</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2000 Jul 17;19(14):3727-38</RefSource>
<PMID Version="1">10899126</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2000 Jul 17;19(14):3739-49</RefSource>
<PMID Version="1">10899127</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Structure. 2001 May 9;9(5):431-8</RefSource>
<PMID Version="1">11377203</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Struct Biol. 2003 Jun;10(6):475-81</RefSource>
<PMID Version="1">12730686</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2003 Aug 22;278(34):31848-52</RefSource>
<PMID Version="1">12923164</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 1990 Mar 6;29(9):2205-12</RefSource>
<PMID Version="1">2186809</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1993 Jan 7;361(6407):91-4</RefSource>
<PMID Version="1">8421501</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1993 Jun 18;73(6):1067-78</RefSource>
<PMID Version="1">8513493</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Protein Sci. 1993 Apr;2(4):543-58</RefSource>
<PMID Version="1">8518729</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Structure. 1994 Jan 15;2(1):33-44</RefSource>
<PMID Version="1">8075981</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomol NMR. 1995 Nov;6(3):277-93</RefSource>
<PMID Version="1">8520220</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 1998 Mar 27;425(2):361-6</RefSource>
<PMID Version="1">9559680</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2005 Apr 22;308(5721):548-50</RefSource>
<PMID Version="1">15746386</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proteins. 2005 Jun 1;59(4):687-96</RefSource>
<PMID Version="1">15815974</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2005 Jun 24;280(25):23668-74</RefSource>
<PMID Version="1">15845542</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>RNA. 2006 Apr;12(4):631-43</RefSource>
<PMID Version="1">16497658</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032084" MajorTopicYN="N">Citrus sinensis</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021983" MajorTopicYN="N">Cyclophilins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016572" MajorTopicYN="N">Cyclosporine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018698" MajorTopicYN="N">Glutamic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012319" MajorTopicYN="N">RNA Polymerase II</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015032" MajorTopicYN="N">Zinc</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3707534</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23709667</ArticleId>
<ArticleId IdType="pii">pp.113.218339</ArticleId>
<ArticleId IdType="doi">10.1104/pp.113.218339</ArticleId>
<ArticleId IdType="pmc">PMC3707534</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000462 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000462 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23709667
   |texte=   A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23709667" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024