Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative transcriptome analyses between a spontaneous late-ripening sweet orange mutant and its wild type suggest the functions of ABA, sucrose and JA during citrus fruit ripening.

Identifieur interne : 000262 ( PubMed/Corpus ); précédent : 000261; suivant : 000263

Comparative transcriptome analyses between a spontaneous late-ripening sweet orange mutant and its wild type suggest the functions of ABA, sucrose and JA during citrus fruit ripening.

Auteurs : Ya-Jian Zhang ; Xing-Jian Wang ; Ju-Xun Wu ; Shan-Yan Chen ; Hong Chen ; Li-Jun Chai ; Hua-Lin Yi

Source :

RBID : pubmed:25551568

English descriptors

Abstract

A spontaneous late-ripening mutant of 'Jincheng' (C. sinensis L. Osbeck) sweet orange exhibited a delay of fruit pigmentation and harvesting. In this work, we studied the processes of orange fruit ripening through the comparative analysis between the Jincheng mutant and its wild type. This study revealed that the fruit quality began to differ on 166th days after anthesis. At this stage, fruits were subjected to transcriptome analysis by RNA sequencing. 13,412 differentially expressed unigenes (DEGs) were found. Of these unigenes, 75.8% were down-regulated in the wild type, suggesting that the transcription level of wild type was lower than that of the mutant during this stage. These DEGs were mainly clustered into five pathways: metabolic pathways, plant-pathogen interaction, spliceosome, biosynthesis of plant hormones and biosynthesis of phenylpropanoids. Therefore, the expression profiles of the genes that are involved in abscisic acid, sucrose, and jasmonic acid metabolism and signal transduction pathways were analyzed during the six fruit ripening stages. The results revealed the regulation mechanism of sweet orange fruit ripening metabolism in the following four aspects: First, the more mature orange fruits were, the lower the transcription levels were. Second, the expression level of PME boosted with the maturity of the citrus fruit. Therefore, the expression level of PME might represent the degree of the orange fruit ripeness. Third, the interaction of PP2C, PYR/PYL, and SnRK2 was peculiar to the orange fruit ripening process. Fourth, abscisic acid, sucrose, and jasmonic acid all took part in orange fruit ripening process and might interact with each other. These findings provide an insight into the intricate process of sweet orange fruit ripening.

DOI: 10.1371/journal.pone.0116056
PubMed: 25551568

Links to Exploration step

pubmed:25551568

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative transcriptome analyses between a spontaneous late-ripening sweet orange mutant and its wild type suggest the functions of ABA, sucrose and JA during citrus fruit ripening.</title>
<author>
<name sortKey="Zhang, Ya Jian" sort="Zhang, Ya Jian" uniqKey="Zhang Y" first="Ya-Jian" last="Zhang">Ya-Jian Zhang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xing Jian" sort="Wang, Xing Jian" uniqKey="Wang X" first="Xing-Jian" last="Wang">Xing-Jian Wang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Ju Xun" sort="Wu, Ju Xun" uniqKey="Wu J" first="Ju-Xun" last="Wu">Ju-Xun Wu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Shan Yan" sort="Chen, Shan Yan" uniqKey="Chen S" first="Shan-Yan" last="Chen">Shan-Yan Chen</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Kunming Academy of Agricultural Sciences, Kunming, 650000, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Hong" sort="Chen, Hong" uniqKey="Chen H" first="Hong" last="Chen">Hong Chen</name>
<affiliation>
<nlm:affiliation>Engineering Technology College, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chai, Li Jun" sort="Chai, Li Jun" uniqKey="Chai L" first="Li-Jun" last="Chai">Li-Jun Chai</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yi, Hua Lin" sort="Yi, Hua Lin" uniqKey="Yi H" first="Hua-Lin" last="Yi">Hua-Lin Yi</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25551568</idno>
<idno type="pmid">25551568</idno>
<idno type="doi">10.1371/journal.pone.0116056</idno>
<idno type="wicri:Area/PubMed/Corpus">000262</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative transcriptome analyses between a spontaneous late-ripening sweet orange mutant and its wild type suggest the functions of ABA, sucrose and JA during citrus fruit ripening.</title>
<author>
<name sortKey="Zhang, Ya Jian" sort="Zhang, Ya Jian" uniqKey="Zhang Y" first="Ya-Jian" last="Zhang">Ya-Jian Zhang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xing Jian" sort="Wang, Xing Jian" uniqKey="Wang X" first="Xing-Jian" last="Wang">Xing-Jian Wang</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Ju Xun" sort="Wu, Ju Xun" uniqKey="Wu J" first="Ju-Xun" last="Wu">Ju-Xun Wu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Shan Yan" sort="Chen, Shan Yan" uniqKey="Chen S" first="Shan-Yan" last="Chen">Shan-Yan Chen</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Kunming Academy of Agricultural Sciences, Kunming, 650000, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Hong" sort="Chen, Hong" uniqKey="Chen H" first="Hong" last="Chen">Hong Chen</name>
<affiliation>
<nlm:affiliation>Engineering Technology College, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chai, Li Jun" sort="Chai, Li Jun" uniqKey="Chai L" first="Li-Jun" last="Chai">Li-Jun Chai</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yi, Hua Lin" sort="Yi, Hua Lin" uniqKey="Yi H" first="Hua-Lin" last="Yi">Hua-Lin Yi</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abscisic Acid (biosynthesis)</term>
<term>Base Sequence</term>
<term>Citrus sinensis (genetics)</term>
<term>Citrus sinensis (growth & development)</term>
<term>Cyclopentanes (metabolism)</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Oxylipins (metabolism)</term>
<term>Phosphoprotein Phosphatases (biosynthesis)</term>
<term>Phosphoprotein Phosphatases (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Protein-Serine-Threonine Kinases (biosynthesis)</term>
<term>Protein-Serine-Threonine Kinases (genetics)</term>
<term>Sequence Analysis, RNA</term>
<term>Sucrose (metabolism)</term>
<term>Transcriptome (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Abscisic Acid</term>
<term>Phosphoprotein Phosphatases</term>
<term>Protein-Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Citrus sinensis</term>
<term>Phosphoprotein Phosphatases</term>
<term>Plant Proteins</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Citrus sinensis</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cyclopentanes</term>
<term>Oxylipins</term>
<term>Sucrose</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Sequence Analysis, RNA</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A spontaneous late-ripening mutant of 'Jincheng' (C. sinensis L. Osbeck) sweet orange exhibited a delay of fruit pigmentation and harvesting. In this work, we studied the processes of orange fruit ripening through the comparative analysis between the Jincheng mutant and its wild type. This study revealed that the fruit quality began to differ on 166th days after anthesis. At this stage, fruits were subjected to transcriptome analysis by RNA sequencing. 13,412 differentially expressed unigenes (DEGs) were found. Of these unigenes, 75.8% were down-regulated in the wild type, suggesting that the transcription level of wild type was lower than that of the mutant during this stage. These DEGs were mainly clustered into five pathways: metabolic pathways, plant-pathogen interaction, spliceosome, biosynthesis of plant hormones and biosynthesis of phenylpropanoids. Therefore, the expression profiles of the genes that are involved in abscisic acid, sucrose, and jasmonic acid metabolism and signal transduction pathways were analyzed during the six fruit ripening stages. The results revealed the regulation mechanism of sweet orange fruit ripening metabolism in the following four aspects: First, the more mature orange fruits were, the lower the transcription levels were. Second, the expression level of PME boosted with the maturity of the citrus fruit. Therefore, the expression level of PME might represent the degree of the orange fruit ripeness. Third, the interaction of PP2C, PYR/PYL, and SnRK2 was peculiar to the orange fruit ripening process. Fourth, abscisic acid, sucrose, and jasmonic acid all took part in orange fruit ripening process and might interact with each other. These findings provide an insight into the intricate process of sweet orange fruit ripening.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25551568</PMID>
<DateCreated>
<Year>2015</Year>
<Month>1</Month>
<Day>1</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>10</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>10</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative transcriptome analyses between a spontaneous late-ripening sweet orange mutant and its wild type suggest the functions of ABA, sucrose and JA during citrus fruit ripening.</ArticleTitle>
<Pagination>
<MedlinePgn>e116056</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0116056</ELocationID>
<Abstract>
<AbstractText>A spontaneous late-ripening mutant of 'Jincheng' (C. sinensis L. Osbeck) sweet orange exhibited a delay of fruit pigmentation and harvesting. In this work, we studied the processes of orange fruit ripening through the comparative analysis between the Jincheng mutant and its wild type. This study revealed that the fruit quality began to differ on 166th days after anthesis. At this stage, fruits were subjected to transcriptome analysis by RNA sequencing. 13,412 differentially expressed unigenes (DEGs) were found. Of these unigenes, 75.8% were down-regulated in the wild type, suggesting that the transcription level of wild type was lower than that of the mutant during this stage. These DEGs were mainly clustered into five pathways: metabolic pathways, plant-pathogen interaction, spliceosome, biosynthesis of plant hormones and biosynthesis of phenylpropanoids. Therefore, the expression profiles of the genes that are involved in abscisic acid, sucrose, and jasmonic acid metabolism and signal transduction pathways were analyzed during the six fruit ripening stages. The results revealed the regulation mechanism of sweet orange fruit ripening metabolism in the following four aspects: First, the more mature orange fruits were, the lower the transcription levels were. Second, the expression level of PME boosted with the maturity of the citrus fruit. Therefore, the expression level of PME might represent the degree of the orange fruit ripeness. Third, the interaction of PP2C, PYR/PYL, and SnRK2 was peculiar to the orange fruit ripening process. Fourth, abscisic acid, sucrose, and jasmonic acid all took part in orange fruit ripening process and might interact with each other. These findings provide an insight into the intricate process of sweet orange fruit ripening.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Ya-Jian</ForeName>
<Initials>YJ</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xing-Jian</ForeName>
<Initials>XJ</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Ju-Xun</ForeName>
<Initials>JX</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Shan-Yan</ForeName>
<Initials>SY</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Kunming Academy of Agricultural Sciences, Kunming, 650000, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Engineering Technology College, Huazhong Agricultural University, Wuhan, 430070, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chai</LastName>
<ForeName>Li-Jun</ForeName>
<Initials>LJ</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yi</LastName>
<ForeName>Hua-Lin</ForeName>
<Initials>HL</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>ENG</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>Dec</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003517">Cyclopentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054883">Oxylipins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>57-50-1</RegistryNumber>
<NameOfSubstance UI="D013395">Sucrose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6RI5N05OWW</RegistryNumber>
<NameOfSubstance UI="C011006">jasmonic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>72S9A8J5GW</RegistryNumber>
<NameOfSubstance UI="D000040">Abscisic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.16</RegistryNumber>
<NameOfSubstance UI="D010749">Phosphoprotein Phosphatases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.16</RegistryNumber>
<NameOfSubstance UI="C082700">protein phosphatase 2C</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2010 Apr;152(4):1787-95</RefSource>
<PMID Version="1">20118272</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2010 Feb;20(2):265-72</RefSource>
<PMID Version="1">20019144</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Integr Plant Biol. 2010 Oct;52(10):856-67</RefSource>
<PMID Version="1">20883438</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Plant Physiol. 2010 Nov 15;167(17):1486-93</RefSource>
<PMID Version="1">20728961</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Plant Biol. 2010;10:276</RefSource>
<PMID Version="1">21159189</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2011 Sep;157(1):188-99</RefSource>
<PMID Version="1">21734113</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2011;12:454</RefSource>
<PMID Version="1">21936920</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Plant Biol. 2011;11:149</RefSource>
<PMID Version="1">22047180</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2011 Nov;62(15):5659-69</RefSource>
<PMID Version="1">21873532</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2012;13:10</RefSource>
<PMID Version="1">22230690</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2012;13:19</RefSource>
<PMID Version="1">22244270</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2012 Mar;22(3):577-91</RefSource>
<PMID Version="1">22110045</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Mol Biol. 2012 Apr;78(6):617-26</RefSource>
<PMID Version="1">22351158</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2012 Aug;63(13):4931-45</RefSource>
<PMID Version="1">22888124</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2012 Oct;63(16):5751-61</RefSource>
<PMID Version="1">22945939</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2012;13:511</RefSource>
<PMID Version="1">23016559</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Plant Physiol. 2012 Dec 15;169(18):1858-65</RefSource>
<PMID Version="1">22884412</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2013 Jan;45(1):59-66</RefSource>
<PMID Version="1">23179022</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2013 Apr;198(2):453-65</RefSource>
<PMID Version="1">23425297</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol Biochem. 2013 Sep;70:433-44</RefSource>
<PMID Version="1">23835361</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phytochemistry. 2013 Nov;95:127-34</RefSource>
<PMID Version="1">23850079</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2013 Nov;64(14):4461-78</RefSource>
<PMID Version="1">24006419</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2014 Jan;164(1):365-83</RefSource>
<PMID Version="1">24276949</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2014 Apr;65(6):1651-71</RefSource>
<PMID Version="1">24600016</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2014 Jul;65(12):3005-14</RefSource>
<PMID Version="1">24723399</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Plant. 2014 Aug;151(4):507-21</RefSource>
<PMID Version="1">24372483</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Plant Physiol. 2014 Sep 15;171(15):1315-24</RefSource>
<PMID Version="1">25046752</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2014;15:695</RefSource>
<PMID Version="1">25142253</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014;9(9):e107562</RefSource>
<PMID Version="1">25215597</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2014 Nov;65(20):5835-48</RefSource>
<PMID Version="1">25129131</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2014 Nov;65(20):5889-902</RefSource>
<PMID Version="1">25135520</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Int Conf Intell Syst Mol Biol. 1999;:138-48</RefSource>
<PMID Version="1">10786296</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2000 Sep;124(1):343-53</RefSource>
<PMID Version="1">10982448</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2004 Feb;134(2):824-37</RefSource>
<PMID Version="1">14739348</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chromatogr A. 1997 Jan 10;758(1):99-107</RefSource>
<PMID Version="1">9035387</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2005 Sep 15;21(18):3674-6</RefSource>
<PMID Version="1">16081474</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W293-7</RefSource>
<PMID Version="1">16845012</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Methods. 2008 Jul;5(7):621-8</RefSource>
<PMID Version="1">18516045</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2008 Sep;18(9):1509-17</RefSource>
<PMID Version="1">18550803</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Genet. 2009 Jan;10(1):57-63</RefSource>
<PMID Version="1">19015660</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene. 2009 Feb 1;430(1-2):95-104</RefSource>
<PMID Version="1">18930791</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Proteomics. 2009 May 2;72(4):586-607</RefSource>
<PMID Version="1">19135558</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Agric Food Chem. 2009 Sep 9;57(17):7974-82</RefSource>
<PMID Version="1">19655798</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 2010 Jun;232(1):219-34</RefSource>
<PMID Version="1">20407788</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000040" MajorTopicYN="N">Abscisic Acid</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032084" MajorTopicYN="N">Citrus sinensis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003517" MajorTopicYN="N">Cyclopentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054883" MajorTopicYN="N">Oxylipins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010749" MajorTopicYN="N">Phosphoprotein Phosphatases</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017423" MajorTopicYN="N">Sequence Analysis, RNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013395" MajorTopicYN="N">Sucrose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4281182</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>8</Month>
<Day>8</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>12</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>10</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25551568</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0116056</ArticleId>
<ArticleId IdType="pii">PONE-D-14-35480</ArticleId>
<ArticleId IdType="pmc">PMC4281182</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000262 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000262 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25551568
   |texte=   Comparative transcriptome analyses between a spontaneous late-ripening sweet orange mutant and its wild type suggest the functions of ABA, sucrose and JA during citrus fruit ripening.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25551568" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024