Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses.

Identifieur interne : 000148 ( PubMed/Corpus ); précédent : 000147; suivant : 000149

Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses.

Auteurs : Luca Lo Cicero ; Panagiotis Madesis ; Athanasios Tsaftaris ; Angela Roberta Lo Piero

Source :

RBID : pubmed:25819876

English descriptors

Abstract

The glutathione transferases (GSTs) are members of a superfamily of enzymes with pivotal role in the detoxification of both xenobiotic and endogenous compounds. In this work, the generation and characterization of transgenic tobacco plants over-expressing tau glutathione transferases from Citrus sinensis (CsGSTU1 and CsGSTU2) and several cross-mutate forms of these genes are reported. Putative transformed plants were verified for the presence of the transgenes and the relative quantification of transgene copy number was evaluated by Taqman real time PCR. The analysis of gene expression revealed that transformed plants exhibit high levels of CsGSTU transcription suggesting that the insertion of the transgenes occurred in transcriptional active regions of the tobacco genome. In planta studies demonstrate that transformed tobacco plants gain tolerance against fluorodifen. Simultaneously, the wild type CsGSTU genes were in vitro expressed and their kinetic properties were determined using fluorodifen as substrate. The results show that CsGSTU2 follows a Michaelis-Menten hyperbolic kinetic, whereas CsGSTU1 generates a sigmoid plot typical of the regulatory enzymes, thus suggesting that when working at sub-lethal fluorodifen concentrations CsGSTU2 can counteract the herbicide injury more efficiently than the CsGSTU1. Moreover, the transgenic tobacco plant over-expressing CsGSTs exhibited both drought and salinity stress tolerance. However, as we show that CsGSTUs do not function as glutathione peroxidase in vitro, the protective effect against salt and drought stress is not due to a direct scavenging activity of the oxidative stress byproducts. The transgenic tobacco plants, which are described in the present study, can be helpful for phytoremediation of residual xenobiotics in the environment and overall the over-expression of CsGSTUs can be helpful to develop genetically modified crops with high resistance to abiotic stresses.

DOI: 10.1016/j.phytochem.2015.03.004
PubMed: 25819876

Links to Exploration step

pubmed:25819876

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses.</title>
<author>
<name sortKey="Lo Cicero, Luca" sort="Lo Cicero, Luca" uniqKey="Lo Cicero L" first="Luca" last="Lo Cicero">Luca Lo Cicero</name>
<affiliation>
<nlm:affiliation>Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Madesis, Panagiotis" sort="Madesis, Panagiotis" uniqKey="Madesis P" first="Panagiotis" last="Madesis">Panagiotis Madesis</name>
<affiliation>
<nlm:affiliation>Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, 570 01 Thermi, Thessaloniki, Greece.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tsaftaris, Athanasios" sort="Tsaftaris, Athanasios" uniqKey="Tsaftaris A" first="Athanasios" last="Tsaftaris">Athanasios Tsaftaris</name>
<affiliation>
<nlm:affiliation>Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, 570 01 Thermi, Thessaloniki, Greece.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lo Piero, Angela Roberta" sort="Lo Piero, Angela Roberta" uniqKey="Lo Piero A" first="Angela Roberta" last="Lo Piero">Angela Roberta Lo Piero</name>
<affiliation>
<nlm:affiliation>Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy. Electronic address: rlopiero@unict.it.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25819876</idno>
<idno type="pmid">25819876</idno>
<idno type="doi">10.1016/j.phytochem.2015.03.004</idno>
<idno type="wicri:Area/PubMed/Corpus">000148</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses.</title>
<author>
<name sortKey="Lo Cicero, Luca" sort="Lo Cicero, Luca" uniqKey="Lo Cicero L" first="Luca" last="Lo Cicero">Luca Lo Cicero</name>
<affiliation>
<nlm:affiliation>Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Madesis, Panagiotis" sort="Madesis, Panagiotis" uniqKey="Madesis P" first="Panagiotis" last="Madesis">Panagiotis Madesis</name>
<affiliation>
<nlm:affiliation>Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, 570 01 Thermi, Thessaloniki, Greece.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tsaftaris, Athanasios" sort="Tsaftaris, Athanasios" uniqKey="Tsaftaris A" first="Athanasios" last="Tsaftaris">Athanasios Tsaftaris</name>
<affiliation>
<nlm:affiliation>Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, 570 01 Thermi, Thessaloniki, Greece.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lo Piero, Angela Roberta" sort="Lo Piero, Angela Roberta" uniqKey="Lo Piero A" first="Angela Roberta" last="Lo Piero">Angela Roberta Lo Piero</name>
<affiliation>
<nlm:affiliation>Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy. Electronic address: rlopiero@unict.it.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Phytochemistry</title>
<idno type="eISSN">1873-3700</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Citrus sinensis (enzymology)</term>
<term>Citrus sinensis (genetics)</term>
<term>DNA (genetics)</term>
<term>Droughts</term>
<term>Glutathione Transferase (metabolism)</term>
<term>Glutathione Transferase (pharmacokinetics)</term>
<term>Greece</term>
<term>Halogenated Diphenyl Ethers (pharmacokinetics)</term>
<term>Halogenated Diphenyl Ethers (pharmacology)</term>
<term>Herbicide Resistance</term>
<term>Plants, Genetically Modified (chemistry)</term>
<term>Plants, Genetically Modified (enzymology)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Salinity</term>
<term>Salt-Tolerance (genetics)</term>
<term>Salt-Tolerance (physiology)</term>
<term>Stress, Physiological (genetics)</term>
<term>Tobacco (chemistry)</term>
<term>Tobacco (enzymology)</term>
<term>Tobacco (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacokinetics" xml:lang="en">
<term>Halogenated Diphenyl Ethers</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Halogenated Diphenyl Ethers</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Greece</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Citrus sinensis</term>
<term>Plants, Genetically Modified</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Citrus sinensis</term>
<term>Plants, Genetically Modified</term>
<term>Salt-Tolerance</term>
<term>Stress, Physiological</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione Transferase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacokinetics" xml:lang="en">
<term>Glutathione Transferase</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Salt-Tolerance</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Droughts</term>
<term>Herbicide Resistance</term>
<term>Salinity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The glutathione transferases (GSTs) are members of a superfamily of enzymes with pivotal role in the detoxification of both xenobiotic and endogenous compounds. In this work, the generation and characterization of transgenic tobacco plants over-expressing tau glutathione transferases from Citrus sinensis (CsGSTU1 and CsGSTU2) and several cross-mutate forms of these genes are reported. Putative transformed plants were verified for the presence of the transgenes and the relative quantification of transgene copy number was evaluated by Taqman real time PCR. The analysis of gene expression revealed that transformed plants exhibit high levels of CsGSTU transcription suggesting that the insertion of the transgenes occurred in transcriptional active regions of the tobacco genome. In planta studies demonstrate that transformed tobacco plants gain tolerance against fluorodifen. Simultaneously, the wild type CsGSTU genes were in vitro expressed and their kinetic properties were determined using fluorodifen as substrate. The results show that CsGSTU2 follows a Michaelis-Menten hyperbolic kinetic, whereas CsGSTU1 generates a sigmoid plot typical of the regulatory enzymes, thus suggesting that when working at sub-lethal fluorodifen concentrations CsGSTU2 can counteract the herbicide injury more efficiently than the CsGSTU1. Moreover, the transgenic tobacco plant over-expressing CsGSTs exhibited both drought and salinity stress tolerance. However, as we show that CsGSTUs do not function as glutathione peroxidase in vitro, the protective effect against salt and drought stress is not due to a direct scavenging activity of the oxidative stress byproducts. The transgenic tobacco plants, which are described in the present study, can be helpful for phytoremediation of residual xenobiotics in the environment and overall the over-expression of CsGSTUs can be helpful to develop genetically modified crops with high resistance to abiotic stresses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25819876</PMID>
<DateCreated>
<Year>2015</Year>
<Month>6</Month>
<Day>13</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>02</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>6</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-3700</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>116</Volume>
<PubDate>
<Year>2015</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Phytochemistry</Title>
<ISOAbbreviation>Phytochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses.</ArticleTitle>
<Pagination>
<MedlinePgn>69-77</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.phytochem.2015.03.004</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0031-9422(15)00115-6</ELocationID>
<Abstract>
<AbstractText>The glutathione transferases (GSTs) are members of a superfamily of enzymes with pivotal role in the detoxification of both xenobiotic and endogenous compounds. In this work, the generation and characterization of transgenic tobacco plants over-expressing tau glutathione transferases from Citrus sinensis (CsGSTU1 and CsGSTU2) and several cross-mutate forms of these genes are reported. Putative transformed plants were verified for the presence of the transgenes and the relative quantification of transgene copy number was evaluated by Taqman real time PCR. The analysis of gene expression revealed that transformed plants exhibit high levels of CsGSTU transcription suggesting that the insertion of the transgenes occurred in transcriptional active regions of the tobacco genome. In planta studies demonstrate that transformed tobacco plants gain tolerance against fluorodifen. Simultaneously, the wild type CsGSTU genes were in vitro expressed and their kinetic properties were determined using fluorodifen as substrate. The results show that CsGSTU2 follows a Michaelis-Menten hyperbolic kinetic, whereas CsGSTU1 generates a sigmoid plot typical of the regulatory enzymes, thus suggesting that when working at sub-lethal fluorodifen concentrations CsGSTU2 can counteract the herbicide injury more efficiently than the CsGSTU1. Moreover, the transgenic tobacco plant over-expressing CsGSTs exhibited both drought and salinity stress tolerance. However, as we show that CsGSTUs do not function as glutathione peroxidase in vitro, the protective effect against salt and drought stress is not due to a direct scavenging activity of the oxidative stress byproducts. The transgenic tobacco plants, which are described in the present study, can be helpful for phytoremediation of residual xenobiotics in the environment and overall the over-expression of CsGSTUs can be helpful to develop genetically modified crops with high resistance to abiotic stresses.</AbstractText>
<CopyrightInformation>Copyright © 2015 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lo Cicero</LastName>
<ForeName>Luca</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Madesis</LastName>
<ForeName>Panagiotis</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, 570 01 Thermi, Thessaloniki, Greece.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tsaftaris</LastName>
<ForeName>Athanasios</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, 570 01 Thermi, Thessaloniki, Greece.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lo Piero</LastName>
<ForeName>Angela Roberta</ForeName>
<Initials>AR</Initials>
<AffiliationInfo>
<Affiliation>Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy. Electronic address: rlopiero@unict.it.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>ENG</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>Mar</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Phytochemistry</MedlineTA>
<NlmUniqueID>0151434</NlmUniqueID>
<ISSNLinking>0031-9422</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D055768">Halogenated Diphenyl Ethers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.18</RegistryNumber>
<NameOfSubstance UI="D005982">Glutathione Transferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>H4154A0WOP</RegistryNumber>
<NameOfSubstance UI="C010457">fluorodifen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D032084" MajorTopicYN="N">Citrus sinensis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="Y">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005982" MajorTopicYN="N">Glutathione Transferase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006115" MajorTopicYN="N" Type="Geographic">Greece</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055768" MajorTopicYN="N">Halogenated Diphenyl Ethers</DescriptorName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053209" MajorTopicYN="N">Herbicide Resistance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="Y">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054712" MajorTopicYN="N">Salinity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055049" MajorTopicYN="N">Salt-Tolerance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="Y">Tobacco</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Abiotic stress</Keyword>
<Keyword MajorTopicYN="N">Citrus sinensis</Keyword>
<Keyword MajorTopicYN="N">Genetic transformation</Keyword>
<Keyword MajorTopicYN="N">Glutathione transferase</Keyword>
<Keyword MajorTopicYN="N">Herbicide detoxification</Keyword>
<Keyword MajorTopicYN="N">Tobacco</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>11</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>3</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>3</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>3</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>3</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25819876</ArticleId>
<ArticleId IdType="pii">S0031-9422(15)00115-6</ArticleId>
<ArticleId IdType="doi">10.1016/j.phytochem.2015.03.004</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000148 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000148 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25819876
   |texte=   Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25819876" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024