Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source.

Identifieur interne : 000957 ( PubMed/Checkpoint ); précédent : 000956; suivant : 000958

Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source.

Auteurs : Seba George [Inde] ; K. Jayachandran

Source :

RBID : pubmed:18716921

English descriptors

Abstract

The fermentative production of rhamnolipid biosurfactant from Pseudomonas aeruginosa MTCC 2297 was carried out by submerged fermentation using various cost-effective waste materials such as orange peelings, carrot peel waste, lime peelings, coconut oil cake, and banana waste. The orange peel was found to be the best substrate generating 9.18 g/l of rhamnolipid biosurfactant with a surface tension reduction up to 31.3 mN/m. The production was growth independent, and optimum conditions were standardized. The emulsifying activity was highest against kerosene (73.3%). Rhamnolipid components were purified and separated by ethyl acetate extraction, preparative silica gel column chromatography, high-performance liquid chromatography and thin-layer chromatography. The major rhamnolipid components were characterized, by fast atom bombardment mass spectrometry, as a mixture of dirhamnolipids and monorhamnolipids.

DOI: 10.1007/s12010-008-8337-6
PubMed: 18716921


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:18716921

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source.</title>
<author>
<name sortKey="George, Seba" sort="George, Seba" uniqKey="George S" first="Seba" last="George">Seba George</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills P.O, Athirampuzha, Kottayam District, Kerala 686 560, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills P.O, Athirampuzha, Kottayam District, Kerala 686 560</wicri:regionArea>
<wicri:noRegion>Kerala 686 560</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jayachandran, K" sort="Jayachandran, K" uniqKey="Jayachandran K" first="K" last="Jayachandran">K. Jayachandran</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:18716921</idno>
<idno type="pmid">18716921</idno>
<idno type="doi">10.1007/s12010-008-8337-6</idno>
<idno type="wicri:Area/PubMed/Corpus">000928</idno>
<idno type="wicri:Area/PubMed/Curation">000928</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000928</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source.</title>
<author>
<name sortKey="George, Seba" sort="George, Seba" uniqKey="George S" first="Seba" last="George">Seba George</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills P.O, Athirampuzha, Kottayam District, Kerala 686 560, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills P.O, Athirampuzha, Kottayam District, Kerala 686 560</wicri:regionArea>
<wicri:noRegion>Kerala 686 560</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jayachandran, K" sort="Jayachandran, K" uniqKey="Jayachandran K" first="K" last="Jayachandran">K. Jayachandran</name>
</author>
</analytic>
<series>
<title level="j">Applied biochemistry and biotechnology</title>
<idno type="eISSN">1559-0291</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon (metabolism)</term>
<term>Citrus sinensis</term>
<term>Culture Media</term>
<term>Fermentation</term>
<term>Glycolipids (analysis)</term>
<term>Glycolipids (biosynthesis)</term>
<term>Glycolipids (chemistry)</term>
<term>Pseudomonas aeruginosa (metabolism)</term>
<term>Surface Tension</term>
<term>Surface-Active Agents (analysis)</term>
<term>Surface-Active Agents (chemistry)</term>
<term>Surface-Active Agents (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Glycolipids</term>
<term>Surface-Active Agents</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Glycolipids</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glycolipids</term>
<term>Surface-Active Agents</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Surface-Active Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Pseudomonas aeruginosa</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Citrus sinensis</term>
<term>Culture Media</term>
<term>Fermentation</term>
<term>Surface Tension</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The fermentative production of rhamnolipid biosurfactant from Pseudomonas aeruginosa MTCC 2297 was carried out by submerged fermentation using various cost-effective waste materials such as orange peelings, carrot peel waste, lime peelings, coconut oil cake, and banana waste. The orange peel was found to be the best substrate generating 9.18 g/l of rhamnolipid biosurfactant with a surface tension reduction up to 31.3 mN/m. The production was growth independent, and optimum conditions were standardized. The emulsifying activity was highest against kerosene (73.3%). Rhamnolipid components were purified and separated by ethyl acetate extraction, preparative silica gel column chromatography, high-performance liquid chromatography and thin-layer chromatography. The major rhamnolipid components were characterized, by fast atom bombardment mass spectrometry, as a mixture of dirhamnolipids and monorhamnolipids.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18716921</PMID>
<DateCreated>
<Year>2010</Year>
<Month>2</Month>
<Day>3</Day>
</DateCreated>
<DateCompleted>
<Year>2010</Year>
<Month>06</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2010</Year>
<Month>2</Month>
<Day>3</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1559-0291</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>158</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2009</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Applied biochemistry and biotechnology</Title>
<ISOAbbreviation>Appl. Biochem. Biotechnol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source.</ArticleTitle>
<Pagination>
<MedlinePgn>694-705</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s12010-008-8337-6</ELocationID>
<Abstract>
<AbstractText>The fermentative production of rhamnolipid biosurfactant from Pseudomonas aeruginosa MTCC 2297 was carried out by submerged fermentation using various cost-effective waste materials such as orange peelings, carrot peel waste, lime peelings, coconut oil cake, and banana waste. The orange peel was found to be the best substrate generating 9.18 g/l of rhamnolipid biosurfactant with a surface tension reduction up to 31.3 mN/m. The production was growth independent, and optimum conditions were standardized. The emulsifying activity was highest against kerosene (73.3%). Rhamnolipid components were purified and separated by ethyl acetate extraction, preparative silica gel column chromatography, high-performance liquid chromatography and thin-layer chromatography. The major rhamnolipid components were characterized, by fast atom bombardment mass spectrometry, as a mixture of dirhamnolipids and monorhamnolipids.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>George</LastName>
<ForeName>Seba</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills P.O, Athirampuzha, Kottayam District, Kerala 686 560, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jayachandran</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>ENG</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>Aug</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Biochem Biotechnol</MedlineTA>
<NlmUniqueID>8208561</NlmUniqueID>
<ISSNLinking>0273-2289</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003470">Culture Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006017">Glycolipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013501">Surface-Active Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C418382">rhamnolipid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032084" MajorTopicYN="Y">Citrus sinensis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003470" MajorTopicYN="N">Culture Media</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005285" MajorTopicYN="Y">Fermentation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006017" MajorTopicYN="N">Glycolipids</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011550" MajorTopicYN="N">Pseudomonas aeruginosa</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013500" MajorTopicYN="N">Surface Tension</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013501" MajorTopicYN="N">Surface-Active Agents</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>6</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>7</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>8</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>8</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18716921</ArticleId>
<ArticleId IdType="doi">10.1007/s12010-008-8337-6</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Jayachandran, K" sort="Jayachandran, K" uniqKey="Jayachandran K" first="K" last="Jayachandran">K. Jayachandran</name>
</noCountry>
<country name="Inde">
<noRegion>
<name sortKey="George, Seba" sort="George, Seba" uniqKey="George S" first="Seba" last="George">Seba George</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000957 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000957 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:18716921
   |texte=   Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:18716921" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024