Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family.

Identifieur interne : 000268 ( PubMed/Checkpoint ); précédent : 000267; suivant : 000269

The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family.

Auteurs : Mustafa Ulasli [Oman] ; Serdar A. Gurses ; Recep Bayraktar ; Onder Yumrutas ; Serdar Oztuzcu ; Mehri Igci ; Yusuf Ziya Igci ; Ecir Ali Cakmak ; Ahmet Arslan

Source :

RBID : pubmed:24413991

English descriptors

Abstract

Extracts of Anthemis hyalina (Ah), Nigella sativa (Ns) and peels of Citrus sinensis (Cs) have been used as folk medicine to fight antimicrobial diseases. To evaluate the effect of extracts of Ah, Ns and Cs on the replication of coronavirus (CoV) and on the expression of TRP genes during coronavirus infection, HeLa-CEACAM1a (HeLa-epithelial carcinoembryonic antigen-related cell adhesion molecule 1a) cells were inoculated with MHV-A59 (mouse hepatitis virus-A59) at moi of 30. 1/50 dilution of the extracts was found to be the safe active dose. ELISA kits were used to detect the human IL-8 levels. Total RNA was isolated from the infected cells and cDNA was synthesized. Fluidigm Dynamic Array nanofluidic chip 96.96 was used to analyze the mRNA expression of 21 TRP genes and two control genes. Data was analyzed using the BioMark digital array software. Determinations of relative gene expression values were carried out by using the 2(-∆∆Ct) method (normalized threshold cycle (Ct) value of sample minus normalized Ct value of control). TCID50/ml (tissue culture infectious dose that will produce cytopathic effect in 50% of the inoculated tissue culture cells) was found for treatments to determine the viral loads. The inflammatory cytokine IL-8 level was found to increase for both 24 and 48 h time points following Ns extract treatment. TRPA1, TRPC4, TRPM6, TRPM7, TRPM8 and TRPV4 were the genes which expression levels changed significantly after Ah, Ns or Cs extract treatments. The virus load decreased when any of the Ah, Ns or Cs extracts was added to the CoV infected cells with Ah extract treatment leading to undetectable virus load for both 6 and 8 hpi. Although all the extract treatments had an effect on IL-8 secretion, TRP gene expression and virus load after CoV infection, it was the Ah extract treatment that showed the biggest difference in virus load. Therefore Ah extract is the best candidate in our hands that contains potential treatment molecule(s).

DOI: 10.1007/s11033-014-3019-7
PubMed: 24413991


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24413991

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family.</title>
<author>
<name sortKey="Ulasli, Mustafa" sort="Ulasli, Mustafa" uniqKey="Ulasli M" first="Mustafa" last="Ulasli">Mustafa Ulasli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Şehitkamil, 27310, Gaziantep, Turkey, mulasli@gmail.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
<wicri:regionArea>Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Şehitkamil, 27310, Gaziantep, Turkey</wicri:regionArea>
<wicri:noRegion>Turkey</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gurses, Serdar A" sort="Gurses, Serdar A" uniqKey="Gurses S" first="Serdar A" last="Gurses">Serdar A. Gurses</name>
</author>
<author>
<name sortKey="Bayraktar, Recep" sort="Bayraktar, Recep" uniqKey="Bayraktar R" first="Recep" last="Bayraktar">Recep Bayraktar</name>
</author>
<author>
<name sortKey="Yumrutas, Onder" sort="Yumrutas, Onder" uniqKey="Yumrutas O" first="Onder" last="Yumrutas">Onder Yumrutas</name>
</author>
<author>
<name sortKey="Oztuzcu, Serdar" sort="Oztuzcu, Serdar" uniqKey="Oztuzcu S" first="Serdar" last="Oztuzcu">Serdar Oztuzcu</name>
</author>
<author>
<name sortKey="Igci, Mehri" sort="Igci, Mehri" uniqKey="Igci M" first="Mehri" last="Igci">Mehri Igci</name>
</author>
<author>
<name sortKey="Igci, Yusuf Ziya" sort="Igci, Yusuf Ziya" uniqKey="Igci Y" first="Yusuf Ziya" last="Igci">Yusuf Ziya Igci</name>
</author>
<author>
<name sortKey="Cakmak, Ecir Ali" sort="Cakmak, Ecir Ali" uniqKey="Cakmak E" first="Ecir Ali" last="Cakmak">Ecir Ali Cakmak</name>
</author>
<author>
<name sortKey="Arslan, Ahmet" sort="Arslan, Ahmet" uniqKey="Arslan A" first="Ahmet" last="Arslan">Ahmet Arslan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24413991</idno>
<idno type="pmid">24413991</idno>
<idno type="doi">10.1007/s11033-014-3019-7</idno>
<idno type="wicri:Area/PubMed/Corpus">000365</idno>
<idno type="wicri:Area/PubMed/Curation">000365</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000365</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family.</title>
<author>
<name sortKey="Ulasli, Mustafa" sort="Ulasli, Mustafa" uniqKey="Ulasli M" first="Mustafa" last="Ulasli">Mustafa Ulasli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Şehitkamil, 27310, Gaziantep, Turkey, mulasli@gmail.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
<wicri:regionArea>Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Şehitkamil, 27310, Gaziantep, Turkey</wicri:regionArea>
<wicri:noRegion>Turkey</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gurses, Serdar A" sort="Gurses, Serdar A" uniqKey="Gurses S" first="Serdar A" last="Gurses">Serdar A. Gurses</name>
</author>
<author>
<name sortKey="Bayraktar, Recep" sort="Bayraktar, Recep" uniqKey="Bayraktar R" first="Recep" last="Bayraktar">Recep Bayraktar</name>
</author>
<author>
<name sortKey="Yumrutas, Onder" sort="Yumrutas, Onder" uniqKey="Yumrutas O" first="Onder" last="Yumrutas">Onder Yumrutas</name>
</author>
<author>
<name sortKey="Oztuzcu, Serdar" sort="Oztuzcu, Serdar" uniqKey="Oztuzcu S" first="Serdar" last="Oztuzcu">Serdar Oztuzcu</name>
</author>
<author>
<name sortKey="Igci, Mehri" sort="Igci, Mehri" uniqKey="Igci M" first="Mehri" last="Igci">Mehri Igci</name>
</author>
<author>
<name sortKey="Igci, Yusuf Ziya" sort="Igci, Yusuf Ziya" uniqKey="Igci Y" first="Yusuf Ziya" last="Igci">Yusuf Ziya Igci</name>
</author>
<author>
<name sortKey="Cakmak, Ecir Ali" sort="Cakmak, Ecir Ali" uniqKey="Cakmak E" first="Ecir Ali" last="Cakmak">Ecir Ali Cakmak</name>
</author>
<author>
<name sortKey="Arslan, Ahmet" sort="Arslan, Ahmet" uniqKey="Arslan A" first="Ahmet" last="Arslan">Ahmet Arslan</name>
</author>
</analytic>
<series>
<title level="j">Molecular biology reports</title>
<idno type="eISSN">1573-4978</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Anthemis (chemistry)</term>
<term>Citrus sinensis (chemistry)</term>
<term>Coronavirus (drug effects)</term>
<term>Coronavirus (growth & development)</term>
<term>Coronavirus Infections (drug therapy)</term>
<term>Coronavirus Infections (pathology)</term>
<term>Coronavirus Infections (virology)</term>
<term>Gene Expression Regulation, Viral (drug effects)</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Interleukin-8 (genetics)</term>
<term>Medicine, Traditional</term>
<term>Mice</term>
<term>Nigella sativa (chemistry)</term>
<term>Plant Extracts (administration & dosage)</term>
<term>Plant Extracts (chemistry)</term>
<term>Transient Receptor Potential Channels (biosynthesis)</term>
<term>Virus Replication (drug effects)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Plant Extracts</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Transient Receptor Potential Channels</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Extracts</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Interleukin-8</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Anthemis</term>
<term>Citrus sinensis</term>
<term>Nigella sativa</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Coronavirus</term>
<term>Gene Expression Regulation, Viral</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Medicine, Traditional</term>
<term>Mice</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Extracts of Anthemis hyalina (Ah), Nigella sativa (Ns) and peels of Citrus sinensis (Cs) have been used as folk medicine to fight antimicrobial diseases. To evaluate the effect of extracts of Ah, Ns and Cs on the replication of coronavirus (CoV) and on the expression of TRP genes during coronavirus infection, HeLa-CEACAM1a (HeLa-epithelial carcinoembryonic antigen-related cell adhesion molecule 1a) cells were inoculated with MHV-A59 (mouse hepatitis virus-A59) at moi of 30. 1/50 dilution of the extracts was found to be the safe active dose. ELISA kits were used to detect the human IL-8 levels. Total RNA was isolated from the infected cells and cDNA was synthesized. Fluidigm Dynamic Array nanofluidic chip 96.96 was used to analyze the mRNA expression of 21 TRP genes and two control genes. Data was analyzed using the BioMark digital array software. Determinations of relative gene expression values were carried out by using the 2(-∆∆Ct) method (normalized threshold cycle (Ct) value of sample minus normalized Ct value of control). TCID50/ml (tissue culture infectious dose that will produce cytopathic effect in 50% of the inoculated tissue culture cells) was found for treatments to determine the viral loads. The inflammatory cytokine IL-8 level was found to increase for both 24 and 48 h time points following Ns extract treatment. TRPA1, TRPC4, TRPM6, TRPM7, TRPM8 and TRPV4 were the genes which expression levels changed significantly after Ah, Ns or Cs extract treatments. The virus load decreased when any of the Ah, Ns or Cs extracts was added to the CoV infected cells with Ah extract treatment leading to undetectable virus load for both 6 and 8 hpi. Although all the extract treatments had an effect on IL-8 secretion, TRP gene expression and virus load after CoV infection, it was the Ah extract treatment that showed the biggest difference in virus load. Therefore Ah extract is the best candidate in our hands that contains potential treatment molecule(s).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24413991</PMID>
<DateCreated>
<Year>2014</Year>
<Month>2</Month>
<Day>25</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>5</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-4978</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>41</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2014</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Molecular biology reports</Title>
<ISOAbbreviation>Mol. Biol. Rep.</ISOAbbreviation>
</Journal>
<ArticleTitle>The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family.</ArticleTitle>
<Pagination>
<MedlinePgn>1703-11</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11033-014-3019-7</ELocationID>
<Abstract>
<AbstractText>Extracts of Anthemis hyalina (Ah), Nigella sativa (Ns) and peels of Citrus sinensis (Cs) have been used as folk medicine to fight antimicrobial diseases. To evaluate the effect of extracts of Ah, Ns and Cs on the replication of coronavirus (CoV) and on the expression of TRP genes during coronavirus infection, HeLa-CEACAM1a (HeLa-epithelial carcinoembryonic antigen-related cell adhesion molecule 1a) cells were inoculated with MHV-A59 (mouse hepatitis virus-A59) at moi of 30. 1/50 dilution of the extracts was found to be the safe active dose. ELISA kits were used to detect the human IL-8 levels. Total RNA was isolated from the infected cells and cDNA was synthesized. Fluidigm Dynamic Array nanofluidic chip 96.96 was used to analyze the mRNA expression of 21 TRP genes and two control genes. Data was analyzed using the BioMark digital array software. Determinations of relative gene expression values were carried out by using the 2(-∆∆Ct) method (normalized threshold cycle (Ct) value of sample minus normalized Ct value of control). TCID50/ml (tissue culture infectious dose that will produce cytopathic effect in 50% of the inoculated tissue culture cells) was found for treatments to determine the viral loads. The inflammatory cytokine IL-8 level was found to increase for both 24 and 48 h time points following Ns extract treatment. TRPA1, TRPC4, TRPM6, TRPM7, TRPM8 and TRPV4 were the genes which expression levels changed significantly after Ah, Ns or Cs extract treatments. The virus load decreased when any of the Ah, Ns or Cs extracts was added to the CoV infected cells with Ah extract treatment leading to undetectable virus load for both 6 and 8 hpi. Although all the extract treatments had an effect on IL-8 secretion, TRP gene expression and virus load after CoV infection, it was the Ah extract treatment that showed the biggest difference in virus load. Therefore Ah extract is the best candidate in our hands that contains potential treatment molecule(s).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ulasli</LastName>
<ForeName>Mustafa</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Şehitkamil, 27310, Gaziantep, Turkey, mulasli@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gurses</LastName>
<ForeName>Serdar A</ForeName>
<Initials>SA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bayraktar</LastName>
<ForeName>Recep</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yumrutas</LastName>
<ForeName>Onder</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oztuzcu</LastName>
<ForeName>Serdar</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Igci</LastName>
<ForeName>Mehri</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Igci</LastName>
<ForeName>Yusuf Ziya</ForeName>
<Initials>YZ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cakmak</LastName>
<ForeName>Ecir Ali</ForeName>
<Initials>EA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Arslan</LastName>
<ForeName>Ahmet</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>ENG</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>Jan</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Mol Biol Rep</MedlineTA>
<NlmUniqueID>0403234</NlmUniqueID>
<ISSNLinking>0301-4851</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016209">Interleukin-8</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010936">Plant Extracts</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050051">Transient Receptor Potential Channels</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Phytomedicine. 2004 Jan;11(1):56-64</RefSource>
<PMID Version="1">14971722</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2003 Dec 4;426(6966):517-24</RefSource>
<PMID Version="1">14654832</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Ethnopharmacol. 2004 Dec;95(2-3):151-4</RefSource>
<PMID Version="1">15507328</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Virol. 1979;59(1-2):25-33</RefSource>
<PMID Version="1">218534</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Virol. 1995 Aug;69(8):5142-6</RefSource>
<PMID Version="1">7609085</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Virus Res. 1997;48:1-100</RefSource>
<PMID Version="1">9233431</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 1998 Apr 1;58(7):1515-20</RefSource>
<PMID Version="1">9537257</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Top Microbiol Immunol. 2005;287:1-30</RefSource>
<PMID Version="1">15609507</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Virus Res. 2005;64:165-230</RefSource>
<PMID Version="1">16139595</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microbiol Mol Biol Rev. 2005 Dec;69(4):635-64</RefSource>
<PMID Version="1">16339739</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Virol. 2006 Feb;80(3):1250-60</RefSource>
<PMID Version="1">16415002</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Sci. 2006 Jan;13(1):59-72</RefSource>
<PMID Version="1">16228284</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Virus Res. 2006;66:193-292</RefSource>
<PMID Version="1">16877062</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Infect Dis. 2006 Oct 15;43(8):1009-15</RefSource>
<PMID Version="1">16983613</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Virol. 2007 Jan;81(1):20-9</RefSource>
<PMID Version="1">16928755</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Braz J Med Biol Res. 2007 Jun;40(6):839-47</RefSource>
<PMID Version="1">17581684</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2007 Aug;102(3):977-90</RefSource>
<PMID Version="1">17442041</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2008 Jun;4(6):e1000088</RefSource>
<PMID Version="1">18551169</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Virology. 2008 Oct 25;380(2):213-25</RefSource>
<PMID Version="1">18768192</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Pharm Bull. 2009 Jan;32(1):68-73</RefSource>
<PMID Version="1">19122283</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):582-7</RefSource>
<PMID Version="1">19124777</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Virol. 2009 Apr;83(7):3039-48</RefSource>
<PMID Version="1">19004938</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Microbiol. 2009 Jun;7(6):439-50</RefSource>
<PMID Version="1">19430490</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2009 Jun;1793(6):953-8</RefSource>
<PMID Version="1">19103233</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Virol J. 2009;6:197</RefSource>
<PMID Version="1">19912623</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Microbiol. 2010 Jun;12(6):844-61</RefSource>
<PMID Version="1">20088951</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Virol. 2010 Oct;84(19):10276-88</RefSource>
<PMID Version="1">20660183</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Endocr Metab Immune Disord Drug Targets. 2011 Mar;11(1):54-67</RefSource>
<PMID Version="1">21348820</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Afr J Tradit Complement Altern Med. 2011;8(2):159-64</RefSource>
<PMID Version="1">22238497</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parasitol Res. 2012 May;110(5):1929-36</RefSource>
<PMID Version="1">22127387</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>N Engl J Med. 2012 Nov 8;367(19):1814-20</RefSource>
<PMID Version="1">23075143</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Acad Dermatol. 2013 Apr;68(4):e127-35</RefSource>
<PMID Version="1">21890235</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Food Environ Virol. 2013 Jun;5(2):97-102</RefSource>
<PMID Version="1">23412728</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Res Vet Sci. 2013 Oct;95(2):717-24</RefSource>
<PMID Version="1">23664014</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Basic Clin Physiol Pharmacol. 2014 May 1;25(2):199-204</RefSource>
<PMID Version="1">23907423</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Pharm Biomed Anal. 1999 Apr;19(5):757-62</RefSource>
<PMID Version="1">10698539</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Gen Virol. 2000 Apr;81(Pt 4):853-79</RefSource>
<PMID Version="1">10725411</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Immunopharmacol. 2000 Sep;22(9):729-40</RefSource>
<PMID Version="1">10884593</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9599-604</RefSource>
<PMID Version="1">11481452</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>N Engl J Med. 2003 May 15;348(20):1967-76</RefSource>
<PMID Version="1">12690091</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Exp Toxicol. 2003 Apr;22(4):193-203</RefSource>
<PMID Version="1">12755470</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Virol. 2003 Nov;77(21):11312-23</RefSource>
<PMID Version="1">14557617</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Emerg Infect Dis. 2004 Oct;10(10):1774-81</RefSource>
<PMID Version="1">15504263</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031166" MajorTopicYN="N">Anthemis</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032084" MajorTopicYN="N">Citrus sinensis</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015967" MajorTopicYN="N">Gene Expression Regulation, Viral</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016209" MajorTopicYN="N">Interleukin-8</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008519" MajorTopicYN="N">Medicine, Traditional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031881" MajorTopicYN="N">Nigella sativa</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010936" MajorTopicYN="N">Plant Extracts</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="Y">administration & dosage</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050051" MajorTopicYN="N">Transient Receptor Potential Channels</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3933739</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>9</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>1</Month>
<Day>2</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24413991</ArticleId>
<ArticleId IdType="doi">10.1007/s11033-014-3019-7</ArticleId>
<ArticleId IdType="pmc">PMC3933739</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Oman</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Arslan, Ahmet" sort="Arslan, Ahmet" uniqKey="Arslan A" first="Ahmet" last="Arslan">Ahmet Arslan</name>
<name sortKey="Bayraktar, Recep" sort="Bayraktar, Recep" uniqKey="Bayraktar R" first="Recep" last="Bayraktar">Recep Bayraktar</name>
<name sortKey="Cakmak, Ecir Ali" sort="Cakmak, Ecir Ali" uniqKey="Cakmak E" first="Ecir Ali" last="Cakmak">Ecir Ali Cakmak</name>
<name sortKey="Gurses, Serdar A" sort="Gurses, Serdar A" uniqKey="Gurses S" first="Serdar A" last="Gurses">Serdar A. Gurses</name>
<name sortKey="Igci, Mehri" sort="Igci, Mehri" uniqKey="Igci M" first="Mehri" last="Igci">Mehri Igci</name>
<name sortKey="Igci, Yusuf Ziya" sort="Igci, Yusuf Ziya" uniqKey="Igci Y" first="Yusuf Ziya" last="Igci">Yusuf Ziya Igci</name>
<name sortKey="Oztuzcu, Serdar" sort="Oztuzcu, Serdar" uniqKey="Oztuzcu S" first="Serdar" last="Oztuzcu">Serdar Oztuzcu</name>
<name sortKey="Yumrutas, Onder" sort="Yumrutas, Onder" uniqKey="Yumrutas O" first="Onder" last="Yumrutas">Onder Yumrutas</name>
</noCountry>
<country name="Oman">
<noRegion>
<name sortKey="Ulasli, Mustafa" sort="Ulasli, Mustafa" uniqKey="Ulasli M" first="Mustafa" last="Ulasli">Mustafa Ulasli</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000268 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000268 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:24413991
   |texte=   The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:24413991" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024